MATHS WORKSHOPS Differentiation

The theory of differentiation

How differentiation is done in practice

Application: Finding Maxima and Minima

Conclusion

Outline

The theory of differentiation

How differentiation is done in practice

Application: Finding Maxima and Minima

Conclusion

Differentiation			Conclusion
Differentiation			THE UNIVERSITY OF SYDNEY
 A useful whether the derivation 	vay to explore the tive.	e properties of a function is	to find
Definition (D	erivative)		
The derivative changes.	is a measure of H	how a function changes as it	s input More

- The derivative of a function at a chosen input value describes the best linear approximation of the function near that input value.
- For single variable functions, f(x), the derivative at a point equals the slope of the tangent line to the graph of the function at that point.
- The process of finding a derivative is called differentiation.

Formal Statement of Differentiation

Definition (Derivative at the point x = a)

$$\frac{d}{dx}f(a) = f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

This can be explained graphically:

Application

Formal Statement of Differentiation

Definition (Derivative at the point x = a)

$$\frac{d}{dx}f(a) = f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

This can be explained graphically:

Definition (Derivative at the point x = a)

$$\frac{d}{dx}f(a) = f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \approx \frac{\Delta y}{\Delta x} = \frac{\mathsf{rise}}{\mathsf{run}}$$

This can be explained graphically:

Example using the technical definition

Example (Differentiate $f(x) = x^2$ by first principles)

Using the definition on the previous slide:

6

$$\frac{d}{dx}f(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$
$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$
$$= \lim_{h \to 0} \frac{h(2x+h)}{h}$$
$$= \lim_{h \to 0} (2x+h)$$
$$= 2x$$

Notation

• Given some function of x, y = f(x), the following expressions are equivalent:

$$\frac{dy}{dx} = \frac{d}{dx}y = \frac{d}{dx}f(x) = f'(x).$$

- We read $\frac{dy}{dx}$ as "the derivative of y with respect to x."
- We can differentiate with respect to whatever variable we'd like. For example if y is a function of u, y = f(u), we can differentiate y with respect to u:

$$\frac{dy}{du} = f'(u).$$

• We read f'(x) as f prime x. This notation is often used for convenience when there is no ambiguity about what we are differentiating with respect to.

How differentiation is done in practice

SYDNEY

Differentiation in practice

Rarely do people differentiate by "first principles", i.e. using the definition. Instead, we use some simple rules:

Function: $f(x) = y$	Derivative $f'(x) = \frac{dy}{dx}$
x^n	nx^{n-1}
ax^n	anx^{n-1}
a (some constant)	0
$\log(x)$	$x^{-1} = \frac{1}{x}$
e^x	e^x

Example
$$(f(x) = x^2)$$

Using the above rules,

$$f'(x) = \frac{d}{dx}f(x) = 2x^{2-1} = 2x^1 = 2x.$$

More complicated example

Example
$$(f(x) = 2x^4 + 5x^3)$$

$$f'(x) = 2 \times 4x^{4-1} + 5 \times 3x^{3-1}$$
$$= 8x^3 + 15x^2$$

Example (Your turn:
$$f(x) = 9x^2 + x^3$$
)

$$f'(x) =$$

More complicated example

Example
$$(f(x) = 2x^4 + 5x^3)$$

$$f'(x) = 2 \times 4x^{4-1} + 5 \times 3x^{3-1}$$
$$= 8x^3 + 15x^2$$

Example (Your turn: $f(x) = 9x^2 + x^3$)

$$f'(x) = 9 \times 2x^{2-1} + 3x^{3-1} =$$

More complicated example

Example
$$(f(x) = 2x^4 + 5x^3)$$

$$f'(x) = 2 \times 4x^{4-1} + 5 \times 3x^{3-1}$$
$$= 8x^3 + 15x^2$$

Example (Your turn: $f(x) = 9x^2 + x^3$)

$$f'(x) = 9 \times 2x^{2-1} + 3x^{3-1}$$

= 18x + 3x²
= 3x(6 + x)

Differentiating Exponential Functions

• The exponential function is unique in that it is equal to its derivative:

$$\frac{d}{dx}e^x = e^x$$

• The exponential function is sometimes written as:

$$e^{f(x)} = \exp\{f(x)\}.$$

- In this definition, a function of x, f(x), is exponentiated.
- The rule for finding a derivative of this type is:

$$\frac{d}{dx}\exp\{f(x)\} = f'(x)\exp\{f(x)\}.$$

Differentiating Exponential Functions

Example $(g(x) = \exp\{2x\})$

- 1. Rewrite as $g(x) = \exp\{f(x)\}$ where f(x) = 2x.
- 2. Find, $f'(x) = 2x^{1-1} = 2x^0 = 2$.
- 3. Thus, $g'(x) = f'(x) \exp\{f(x)\} = 2 \exp\{2x\}.$

Example $(g(x) = \exp\{2x\})$

- 1. Rewrite as $g(x) = \exp\{f(x)\}$ where f(x) = 2x.
- 2. Find, $f'(x) = 2x^{1-1} = 2x^0 = 2$.
- 3. Thus, $g'(x) = f'(x) \exp\{f(x)\} = 2 \exp\{2x\}.$

Example (Your turn: $h(x) = \exp\{3x + 1\}$)

- 1. Rewrite as $h(x) = \exp\{f(x)\}$ where f(x) =
- 2. Find f'(x) =
- 3. Thus, $h'(x) = f'(x) \exp\{f(x)\} =$

THE UNIVERSITY OF SYDNEY

Example $(g(x) = \exp\{2x\})$

- 1. Rewrite as $g(x) = \exp\{f(x)\}$ where f(x) = 2x.
- 2. Find, $f'(x) = 2x^{1-1} = 2x^0 = 2$.
- 3. Thus, $g'(x) = f'(x) \exp\{f(x)\} = 2 \exp\{2x\}.$

Example (Your turn: $h(x) = \exp\{3x + 1\}$)

- 1. Rewrite as $h(x) = \exp\{f(x)\}$ where f(x) = 3x + 1.
- 2. Find f'(x) =
- 3. Thus, $h'(x) = f'(x) \exp\{f(x)\} =$

Rules

Example $(g(x) = \exp\{2x\})$

- 1. Rewrite as $g(x) = \exp\{f(x)\}$ where f(x) = 2x.
- 2. Find, $f'(x) = 2x^{1-1} = 2x^0 = 2$.
- 3. Thus, $g'(x) = f'(x) \exp\{f(x)\} = 2 \exp\{2x\}.$

Example (Your turn: $h(x) = \exp\{3x + 1\}$)

- 1. Rewrite as $h(x) = \exp\{f(x)\}$ where f(x) = 3x + 1.
- 2. Find $f'(x) = 3x^{1-1} + 0 = 3$.
- 3. Thus, $h'(x) = f'(x) \exp\{f(x)\} =$

Rules

Example $(q(x) = \exp\{2x\})$

- 1. Rewrite as $g(x) = \exp\{f(x)\}$ where f(x) = 2x.
- 2. Find, $f'(x) = 2x^{1-1} = 2x^0 = 2$.
- 3. Thus, $g'(x) = f'(x) \exp\{f(x)\} = 2 \exp\{2x\}.$

Example (Your turn: $h(x) = \exp\{3x + 1\}$)

- 1. Rewrite as $h(x) = \exp\{f(x)\}$ where f(x) = 3x + 1.
- 2. Find $f'(x) = 3x^{1-1} + 0 = 3$.
- 3. Thus, $h'(x) = f'(x) \exp\{f(x)\} = 3 \exp\{3x + 1\}.$

Differentiating Logarithmic Functions

- As with the exponential function, there are some special rules for differentiating logarithmic (or log) functions.
- Simple case:

$$\frac{d}{dx}\log(x) = \frac{1}{x}$$

• General case:

$$\frac{d}{dx}\log(f(x)) = \frac{f'(x)}{f(x)}$$

Example $(g(x) = \log(2x^2 + x))$

1. Rewrite as $g(x) = \log(f(x))$ where $f(x) = 2x^2 + x$. 2. Find f'(x) = 4x + 1. 3. Thus, $g'(x) = \frac{f'(x)}{f(x)} = \frac{4x + 1}{2x^2 + x}$.

=

=

=

.

.

Differentiating Logarithmic Functions

Example (Your turn: $y = \log(10x^2 - 3x^2))$

- 1. Rewrite as $y = \log\{f(x)\}$ where f(x) =
- 2. Find f'(x) =
- 3. Thus,

$$\frac{dy}{dx} = \frac{d}{dx}\log(10x^2 - 3x^2) = \frac{f'(x)}{f(x)}$$

=

=

=

.

.

Differentiating Logarithmic Functions

Example (Your turn: $y = \log(10x^2 - 3x^2))$

- 1. Rewrite as $y = \log\{f(x)\}$ where $f(x) = 10x^2 3x^3$.
- 2. Find f'(x) =
- 3. Thus,

$$\frac{dy}{dx} = \frac{d}{dx}\log(10x^2 - 3x^2) = \frac{f'(x)}{f(x)}$$

=

=

=

.

Differentiating Logarithmic Functions

Example (Your turn:
$$y = \log(10x^2 - 3x^2)$$
)

- 1. Rewrite as $y = \log\{f(x)\}$ where $f(x) = 10x^2 3x^3$.
- 2. Find $f'(x) = 10 \times 2x 3 \times 3x^2 = 20x 9x^2 = x(20 9x)$.

3. Thus,

$$\frac{dy}{dx} = \frac{d}{dx}\log(10x^2 - 3x^2) = \frac{f'(x)}{f(x)}$$

Differentiating Logarithmic Functions

Example (Your turn:
$$y = \log(10x^2 - 3x^2)$$
)

- 1. Rewrite as $y = \log\{f(x)\}$ where $f(x) = 10x^2 3x^3$.
- 2. Find $f'(x) = 10 \times 2x 3 \times 3x^2 = 20x 9x^2 = x(20 9x)$. 3. Thus,

$$\frac{dy}{dx} = \frac{d}{dx} \log(10x^2 - 3x^2) = \frac{f'(x)}{f(x)}$$
$$= \frac{x(20 - 9x)}{10x^2 - 3x^3}$$
$$= \frac{x(20 - 9x)}{x^2(10 - 3x)}$$
$$= \frac{20 - 9x}{x(10 - 3x)}.$$

L

Other useful differentiation rules

Definition (Specialised Chain Rule)

et
$$y = [f(x)]^n$$
, $\frac{dy}{dx} = nf'(x) [f(x)]^{n-1}$

• This is a special case of the chain rule

Example $(y = (x^2 + 2)^3)$

Here
$$y = [f(x)]^n = (x^2 + 2)^3$$
 so

• $f(x) = x^2 + 2 \implies f'(x) = \frac{d}{dx}(x^2 + 2) = 2x$

•
$$\frac{dy}{dx} = nf'(x) [f(x)]^{n-1} = 3 \times 2x \times (x^2 + 2)^{3-1} = 6x(x^2 + 2)^2$$

► More

Other useful differentiation rules

Definition (Product Rule)

Let y = uv where u and v are functions of x,

$$\frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} = uv' + vu'$$

Example
$$(y = x^3 \log(x))$$

Here
$$u = x^3$$
; $v = \log(x)$; $v' = \frac{dv}{dx} = \frac{1}{x}$; $u' = \frac{du}{dx} = 3x^2$ so
 $\frac{dy}{dx} = u \times v' + v \times u'$
 $= x^3 \times \frac{1}{x} + \log(x) \times 3x^2$
 $= x^2 + 3x^2 \log(x)$
 $= x^2(1 + 3\log(x)).$

D		nti:	atic	

Rules

Application

Example (Your turn $u = (x^3 -$

Think of our function as $y = [f(x)]^n$ we have in this particular case,

- f(x) =
- f'(x) =
- *n* =

So,

$$\frac{dy}{dx} = nf'(x) [f(x)]^{n-1}$$
$$=$$
$$=$$

Rules

Application

Example (Your turn $y = (x^3 - 1)^2$)

Think of our function as $y = [f(x)]^n$ we have in this particular case,

•
$$f(x) = x^3 - 1$$

•
$$f'(x) =$$

So,

$$\frac{dy}{dx} = nf'(x) [f(x)]^{n-1}$$
$$=$$
$$=$$

Rules

Application

Example (Your turn $y = (x^3 - 1)^2$)

Think of our function as $y = [f(x)]^n$ we have in this particular case,

•
$$f(x) = x^3 - 1$$

• $f'(x) = \frac{d}{dx}(x^3 - 1) = 3x^2$
• $n =$
So,

$$\frac{dy}{dx} = nf'(x) [f(x)]^{n-1}$$

$$=$$

$$=$$

Rules

Application

Example (Your turn $y = (x^3 - 1)^2$)

Think of our function as $y = [f(x)]^n$ we have in this particular case,

•
$$f(x) = x^3 - 1$$

• $f'(x) = \frac{d}{dx}(x^3 - 1) = 3x^2$
• $n = 2$

So,

$$\frac{dy}{dx} = nf'(x) [f(x)]^{n-1}$$

$$=$$

$$=$$

Rules

Application

Example (Your turn $y = (x^3 - 1)^2$)

Think of our function as $y = [f(x)]^n$ we have in this particular case,

•
$$f(x) = x^3 - 1$$

• $f'(x) = \frac{d}{dx}(x^3 - 1) = 3x^2$
• $n = 2$
So,

 $\frac{dy}{dx} = nf'(x) [f(x)]^{n-1}$ = 2 × 3x² × (x³ - 1)²⁻¹ = 6x²(x³ - 1)

Example (Your turn $y = 2x^{-2}\log(x-1)$)

We're differentiating a product so think of the function as y = uv.

Let u = which means u' = du/dx =
Let v = which means v' = dv/dx =

So,

$$\frac{dy}{dx} = uv' + vu' =$$

Rules

Application

Example (Your turn $y = 2x^{-2}\log(x-1)$)

We're differentiating a product so think of the function as y = uv.

Let u = 2x⁻² which means u' = du/dx =
Let v = which means v' = dv/dx =

So,

$$\frac{dy}{dx} = uv' + vu' =$$

Rules

Application

Example (Your turn $y = 2x^{-2}\log(x-1)$)

We're differentiating a product so think of the function as y = uv.

Let u = 2x⁻² which means u' = du/dx = -4x⁻³
Let v = which means v' = dv/dx =

So,

$$\frac{dy}{dx} = uv' + vu' =$$

Rules

Application

Example (Your turn $y = 2x^{-2}\log(x-1)$)

We're differentiating a product so think of the function as y = uv.

So,

$$\frac{dy}{dx} = uv' + vu' =$$

Rules

Application

Example (Your turn $y = 2x^{-2}\log(x-1)$)

We're differentiating a product so think of the function as y = uv.

• Let
$$u = 2x^{-2}$$
 which means $u' = \frac{du}{dx} = -4x^{-3}$
• Let $v = \log(x-1)$ which means $v' = \frac{dv}{dx} = \frac{1}{x-1}$
So.

$$\frac{dy}{dx} = uv' + vu' =$$

S

Your turn...

Rules

Application

Example (Your turn $y = 2x^{-2}\log(x-1)$)

We're differentiating a product so think of the function as y = uv.

• Let
$$u = 2x^{-2}$$
 which means $u' = \frac{du}{dx} = -4x^{-3}$
• Let $v = \log(x - 1)$ which means $v' = \frac{dv}{dx} = \frac{1}{x - 1}$

$$\frac{dy}{dx} = uv' + vu' = 2x^{-2}\frac{1}{x-1} + (-4x^{-3})\log(x-1)$$
$$=$$

Rules

Application

Example (Your turn $y = 2x^{-2}\log(x-1)$)

We're differentiating a product so think of the function as y = uv.

• Let $u = 2x^{-2}$ which means $u' = \frac{du}{dx} = -4x^{-3}$ • Let $v = \log(x-1)$ which means $v' = \frac{dv}{dx} = \frac{1}{x-1}$ So.

$$\frac{dy}{dx} = uv' + vu' = 2x^{-2}\frac{1}{x-1} + (-4x^{-3})\log(x-1)$$
$$= \frac{2}{x^2(x-1)} - 4x^{-3}\log(x-1)$$

L

▶ More

Other useful differentiation rules

Let
$$y = \frac{u}{v}$$
 where u and v are functions of x then
$$\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2} = \frac{vu' - uv'}{v^2}$$

Example
$$(y = \frac{x^4}{e^x})$$

Let $u = x^4$ and $v = e^x$; then $u' = \frac{du}{dx} = 4x^3$ and $v' = \frac{dv}{dx} = e^x$,
 $\frac{dy}{dx} = \frac{vu' - uv'}{v^2} = \frac{e^x \cdot 4x^3 - x^4 \cdot e^x}{(e^x)^2} = \frac{x^3(4-1)}{e^x}$.

Outline

The theory of differentiation

How differentiation is done in practice

Application: Finding Maxima and Minima

Conclusion

Finding Maxima and Minima

The most common use of differentiation is to find the maximum and minimum values of functions.

Finding Maxima and Minima

To determine if a stationary point is a maximum, minimum or neither, we find the second order derivatives.

Definition (Second order derivative)

The second order derivative of a function, f(x), is found by taking the derivative of the first order derivative:

$$f''(x) = \frac{d}{dx}f'(x) = \frac{d}{dx}\left(\frac{d}{dx}f(x)\right).$$

- If f''(x) < 0, the stationary point at x is a maximum.
- If f''(x) > 0, the stationary point at x is a minimum.
- If f''(x) = 0, the nature of the stationary point must be determined by way of other means, often by noting a sign change around that point.

Finding Turning Points

Example $(f(x) = 2x^4 + 5x^3)$

We found previously that $f'(x) = 8x^3 + 15x^2 = x^2(8x + 15)$.

• To find the turning points, we set f'(x) = 0:

$$x^2(8x+15) = 0$$

• This occurs when either:

•
$$x^2 = 0 \implies x = 0$$
 (this is a point of inflection)
• $8x + 15 = 0 \implies x = -\frac{15}{8} = -1.875$ (a minimum) • More

• To determine whether these are turning points are maxima, minima or neither we find the second order derivative:

$$f''(x) = \frac{d}{dx}f'(x) = \frac{d}{dx}(8x^3 + 15x^2)$$

= 24x² + 30x

Application

▶ More

Finding Turning Points

- The second order derivative is: $f''(x) = 24x^2 + 30x$
- We need to evaluate f''(x) at the values of x we identified as turning points:

•
$$f''(0) = 0 \implies$$
 a point of inflection

• $f''(-1.875) = 24 \times (-1.875)^2 - 30 \times 1.875 = 28.125 > 0$ \implies a minimum

Given $f(x) = 9x^2 + x^3$, previously you found $f'(x) = 18x + 3x^2$.

- To find the turning points set f'(x) = 0:
- This occurs when either:
- Second order derivative: $f^{\prime\prime}(x)=$. Evaluate this at the possible turning points:

or

•

Given $f(x) = 9x^2 + x^3$, previously you found $f'(x) = 18x + 3x^2$.

• To find the turning points set f'(x) = 0:

3x(6+x) = 0

- This occurs when either:
 - $3x = 0 \implies x = 0$ or
 - $6+x=0 \implies x=-6$
- Second order derivative: f''(x) = . Evaluate this at the possible turning points:
 - •

Given $f(x) = 9x^2 + x^3$, previously you found $f'(x) = 18x + 3x^2$.

• To find the turning points set f'(x) = 0:

$$3x(6+x) = 0$$

- This occurs when either:
 - $3x = 0 \implies x = 0$ or
 - $6+x=0 \implies x=-6$
- Second order derivative: f''(x) = 18 + 6x. Evaluate this at the possible turning points:
 - •

Given $f(x) = 9x^2 + x^3$, previously you found $f'(x) = 18x + 3x^2$.

• To find the turning points set f'(x) = 0:

$$3x(6+x) = 0$$

- This occurs when either:
 - $3x = 0 \implies x = 0$ or
 - $6+x=0 \implies x=-6$
- Second order derivative: f''(x) = 18 + 6x. Evaluate this at the possible turning points:

•
$$f''(0) = 18 > 0 \implies$$

•
$$f''(-6) = 18 + 6 \times (-6) = -18 < 0 \implies$$

Given $f(x) = 9x^2 + x^3$, previously you found $f'(x) = 18x + 3x^2$.

• To find the turning points set f'(x) = 0:

$$3x(6+x) = 0$$

- This occurs when either:
 - $3x = 0 \implies x = 0$ or
 - $6+x=0 \implies x=-6$
- Second order derivative: f''(x) = 18 + 6x. Evaluate this at the possible turning points:

•
$$f''(0) = 18 > 0 \implies$$
 a minimum

• $f''(-6) = 18 + 6 \times (-6) = -18 < 0 \implies$ a maximum

THE UNIVERSITY OF SYDNEY

- Maximising Utility
 - An investor gains what is known as utility from increasing his/her wealth (think of utility as simply, enjoyment).
 - You can define someones utility as a function of wealth.

Example (Your turn: $U(w) = 4w - \frac{1}{10}w^2$)

- Differentiate U with respect to w:
- Set U'(w) = 0 to find the critical points:
- w = gives the theoretical level of wealth for this investor that will maximise their utility.

Maximising Utility

- An investor gains what is known as utility from increasing his/her wealth (think of utility as simply, enjoyment).
- You can define someones utility as a function of wealth.

- Differentiate U with respect to w: $U'(w) = 4 \frac{2}{10}w$.
- Set U'(w) = 0 to find the critical points:
- gives the theoretical level of wealth for this investor • w =that will maximise their utility.

Maximising Utility

- An investor gains what is known as utility from increasing his/her wealth (think of utility as simply, enjoyment).
- You can define someones utility as a function of wealth.

Example (Your turn: $U(w) = 4w - \frac{1}{10}w^2$)

- Differentiate U with respect to w: $U'(w) = 4 \frac{2}{10}w$.
- Set U'(w) = 0 to find the critical points: $\frac{2}{10}w = 4 \implies w = 20.$
- w = gives the theoretical level of wealth for this investor that will maximise their utility.

Maximising Utility

- An investor gains what is known as utility from increasing his/her wealth (think of utility as simply, enjoyment).
- You can define someones utility as a function of wealth.

- Differentiate U with respect to w: $U'(w) = 4 \frac{2}{10}w$.
- Set U'(w) = 0 to find the critical points: $\frac{2}{10}w = 4 \implies w = 20.$
- w = 20 gives the theoretical level of wealth for this investor that will maximise their utility.

SYDNEY

▶ More

▶ More

More

Applications in Business

- The ubiquitous Cobb-Douglas production function uses exponentials and logs
- The formal interpretation of regression coefficients in econometrics requires differentiation
- Differentiation to finding maxima is used for constrained optimisation in operations management
- Marginal benefits and marginal costs can be derived using differentiation

- Summary
 - Functions, log and exponential functions
 - Differentiation tells us about the behaviour of the function
 - The derivative of a single variable function is the tangent
 - The derivative can be interpreted as the "rate of change" of the function
 - Chain rule, product rule, quotient rule
 - Finding maxima and minima
 - Applications in Business

Summary of Differentiation Identities

Function	Derivative
$f(x) = ax^n$	$f'(x) = anx^{n-1}$
f(x) = a (some constant)	f'(x) = 0
$f(x) = \exp\{g(x)\}$	$f'(x) = g'(x) \cdot \exp\{g(x)\}$
$y = \log\{f(x)\}$	$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$
y = f(u), $u = g(x)$	$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$
y = uv, $u = g(x)$, $v = h(x)$	$\frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}$
$y = \frac{u}{v}$, $u = g(x)$, $v = h(x)$	$\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$

THE UNIVERSITY OF SYDNEY

- Additional Resources
 - Test your knowledge at the University of Sydney Business School MathQuiz: http://quiz.econ.usyd.edu.au/mathquiz
 - Additional resources on the Maths in Business website sydney.edu.au/business/learning/students/maths
 - The University of Sydney Mathematics Learning Centre has a number of additional resources:
 - Maths Learning Centre algebra workshop notes
 - Other Maths Learning Centre Resources
 - The Department of Mathematical Sciences and the Mathematics Learning Support Centre at Loughborough University have a fantastic website full of resources.
 - There's also tonnes of theory, worked questions and additional practice questions online. All you need to do is Google the topic you need more practice with!

▶ More

THE UNIVERSITY OF SYDNEY

- Acknowledgements
 - Presenters and content contributors: Garth Tarr, Edward Deng, Donna Zhou, Justin Wang, Fayzan Bahktiar, Priyanka Goonetilleke.
 - Mathematics Workshops Project Manager Jessica Morr from the Learning and Teaching in Business.
 - Valuable comments, feedback and support from Erick Li and Michele Scoufis.
 - Questions, comments, feedback? Let us know at business.maths@sydney.edu.au