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Differentiation

• A useful way to explore the properties of a function is to find
the derivative.

Definition (Derivative)

The derivative is a measure of how a function changes as its input
changes. More

• The derivative of a function at a chosen input value describes
the best linear approximation of the function near that input
value.

• For single variable functions, f(x), the derivative at a point
equals the slope of the tangent line to the graph of the
function at that point.

• The process of finding a derivative is called differentiation.

http://en.wikipedia.org/wiki/Derivative
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Tangent

Definition (Tangent)

The tangent to a curve at a given point is the straight line that
“just touches” the curve at that point. More

Example

x

f(x)

http://en.wikipedia.org/wiki/Tangent
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Formal Statement of Differentiation

Definition (Derivative at the point x = a)

d

dx
f(a) = f ′(a) = lim

h→0

f(a + h)− f(a)

h

≈ ∆y

∆x
=

rise

run

This can be explained graphically:

x

f(x)

a

f(a)

a + h1

f(a + h1)

f(a + h1)− f(a)

h1
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x

f(x)

a

f(a)

a + h2

f(a + h2)
f(a + h2)− f(a)
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Formal Statement of Differentiation

Definition (Derivative at the point x = a)

d

dx
f(a) = f ′(a) = lim

h→0

f(a + h)− f(a)

h
≈ ∆y
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=
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run
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x

f(x)

a

f(a)
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∆y

∆x
=
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run
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Example using the technical definition

Example (Differentiate f(x) = x2 by first principles)

Using the definition on the previous slide:

d

dx
f(x) = f ′(x) = lim

h→0

f(x + h)− f(x)

h

= lim
h→0

(x + h)2 − x2

h

= lim
h→0

x2 + 2xh + h2 − x2

h

= lim
h→0

h(2x + h)

h

= lim
h→0

(2x + h)

= 2x
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Notation

• Given some function of x, y = f(x), the following expressions
are equivalent:

dy

dx
=

d

dx
y =

d

dx
f(x) = f ′(x).

• We read
dy

dx
as “the derivative of y with respect to x.”

• We can differentiate with respect to whatever variable we’d
like. For example if y is a function of u, y = f(u), we can
differentiate y with respect to u:

dy

du
= f ′(u).

• We read f ′(x) as f prime x. This notation is often used for
convenience when there is no ambiguity about what we are
differentiating with respect to.
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Differentiation in practice

Rarely do people differentiate by “first principles”, i.e. using the
definition. Instead, we use some simple rules: More

Function: f(x) = y Derivative f ′(x) = dy
dx

xn nxn−1

axn anxn−1

a (some constant) 0

log(x) x−1 = 1
x

ex ex

Example (f(x) = x2)

Using the above rules,

f ′(x) =
d

dx
f(x) = 2x2−1 = 2x1 = 2x.

http://en.wikipedia.org/wiki/Differentiation_rules
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More complicated example

Example (f(x) = 2x4 + 5x3)

f ′(x) = 2× 4x4−1 + 5× 3x3−1

= 8x3 + 15x2

Example (Your turn: f(x) = 9x2 + x3)

f ′(x) =

9× 2x2−1 + 3x3−1

=

18x + 3x2

=

3x(6 + x)
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Differentiating Exponential Functions

• The exponential function is unique in that it is equal to its
derivative:

d

dx
ex = ex

• The exponential function is sometimes written as:

ef(x) = exp{f(x)}.

• In this definition, a function of x, f(x), is exponentiated.

• The rule for finding a derivative of this type is:

d

dx
exp{f(x)} = f ′(x) exp{f(x)}.
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Differentiating Exponential Functions

Example (g(x) = exp{2x})

1. Rewrite as g(x) = exp{f(x)} where f(x) = 2x.

2. Find, f ′(x) = 2x1−1 = 2x0 = 2.

3. Thus, g′(x) = f ′(x) exp{f(x)} = 2 exp{2x}.

Example (Your turn: h(x) = exp{3x+ 1})

1. Rewrite as h(x) = exp{f(x)} where f(x) =

3x + 1

.

2. Find f ′(x) =

3x1−1 + 0 = 3

.

3. Thus, h′(x) = f ′(x) exp{f(x)} =

3 exp{3x + 1}

.
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Differentiating Logarithmic Functions

• As with the exponential function, there are some special rules
for differentiating logarithmic (or log) functions.

• Simple case:
d

dx
log(x) =

1

x

• General case:
d

dx
log(f(x)) =

f ′(x)

f(x)

Example (g(x) = log(2x2 + x))

1. Rewrite as g(x) = log(f(x)) where f(x) = 2x2 + x.

2. Find f ′(x) = 4x + 1.

3. Thus, g′(x) =
f ′(x)

f(x)
=

4x + 1

2x2 + x
.
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Differentiating Logarithmic Functions

Example (Your turn: y = log(10x2 − 3x2))

1. Rewrite as y = log{f(x)} where f(x) =

10x2 − 3x3

.

2. Find f ′(x) =

10× 2x− 3× 3x2 = 20x− 9x2 = x(20− 9x)

.

3. Thus,

dy

dx
=

d

dx
log(10x2 − 3x2) =

f ′(x)

f(x)

=

x(20− 9x)

10x2 − 3x3

=

x(20− 9x)

x2(10− 3x)

=

20− 9x

x(10− 3x)

.
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Other useful differentiation rules

Definition (Specialised Chain Rule)

Let y = [f(x)]n,
dy

dx
= nf ′(x) [f(x)]n−1

• This is a special case of the chain rule More

Example (y = (x2 + 2)3)

Here y = [f(x)]n = (x2 + 2)3 so

• f(x) = x2 + 2 =⇒ f ′(x) =
d

dx
(x2 + 2) = 2x

• n = 3

• dy
dx = nf ′(x) [f(x)]n−1 = 3× 2x× (x2 + 2)3−1 = 6x(x2 + 2)2

http://en.wikipedia.org/wiki/Chain_rule
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Other useful differentiation rules

Definition (Product Rule)

Let y = uv where u and v are functions of x,

dy

dx
= u · dv

dx
+ v · du

dx
= uv′ + vu′ More

Example (y = x3 log(x))

Here u = x3; v = log(x); v′ =
dv

dx
=

1

x
; u′ =

du

dx
= 3x2 so

dy

dx
= u× v′ + v × u′

= x3 × 1

x
+ log(x)× 3x2

= x2 + 3x2 log(x)

= x2(1 + 3 log(x)).

http://en.wikipedia.org/wiki/Product_rule
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Your turn. . .

Example (Your turn y = (x3 − 1)2)

Think of our function as y = [f(x)]n we have in this particular
case,

• f(x) =

x3 − 1

• f ′(x) =

d

dx
(x3 − 1) = 3x2

• n =

2

So,

dy

dx
= nf ′(x) [f(x)]n−1

=

2× 3x2 × (x3 − 1)2−1

=

6x2(x3 − 1)
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Your turn. . .

Example (Your turn y = 2x−2 log(x− 1))

We’re differentiating a product so think of the function as y = uv.

• Let u =

2x−2

which means u′ =
du

dx
=

− 4x−3

• Let v =

log(x− 1)

which means v′ =
dv

dx
=

1

x− 1

So,

dy

dx
= uv′ + vu′ =

2x−2
1

x− 1
+ (−4x−3) log(x− 1)

=

2

x2(x− 1)
− 4x−3 log(x− 1)

Note that you can always check you differentiation using
WolframAlpha: d/dx 2x^(-2)*log(x-1) More

http://www.wolframalpha.com/input/?i=d/dx+2x^(-2)*log(x-1)
http://www.wolframalpha.com
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Other useful differentiation rules

Definition (Quotient Rule)

Let y =
u

v
where u and v are functions of x then

dy

dx
=

v · du
dx
− u · dv

dx
v2

=
vu′ − uv′

v2
More

Example (y =
x4

ex
)

Let u = x4 and v = ex; then u′ =
du

dx
= 4x3 and v′ =

dv

dx
= ex,

dy

dx
=

vu′ − uv′

v2
=

ex · 4x3 − x4 · ex

(ex)2
=

x3(4− 1)

ex
.

http://en.wikipedia.org/wiki/Quotient_rule
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Finding Maxima and Minima

The most common use of differentiation is to find the maximum
and minimum values of functions.

Key Idea

“Stationary points” occur when the derivative equals zero,
f ′(x) = 0, i.e. the tangent line is a horizontal line. More

x

f(x)

http://en.wikipedia.org/wiki/Stationary_point
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Finding Maxima and Minima

To determine if a stationary point is a maximum, minimum or
neither, we find the second order derivatives.

Definition (Second order derivative)

The second order derivative of a function, f(x), is found by taking
the derivative of the first order derivative:

f ′′(x) =
d

dx
f ′(x) =

d

dx

(
d

dx
f(x)

)
.

• If f ′′(x) < 0, the stationary point at x is a maximum.

• If f ′′(x) > 0, the stationary point at x is a minimum.

• If f ′′(x) = 0, the nature of the stationary point must be
determined by way of other means, often by noting a sign
change around that point.
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Finding Turning Points

Example (f(x) = 2x4 + 5x3)

We found previously that f ′(x) = 8x3 + 15x2 = x2(8x + 15).

• To find the turning points, we set f ′(x) = 0:

x2(8x + 15) = 0

• This occurs when either:
• x2 = 0 =⇒ x = 0 (this is a point of inflection) More

• 8x + 15 = 0 =⇒ x = −15

8
= −1.875 (a minimum) More

• To determine whether these are turning points are maxima,
minima or neither we find the second order derivative:

f ′′(x) =
d

dx
f ′(x) =

d

dx

(
8x3 + 15x2

)
= 24x2 + 30x

http://en.wikipedia.org/wiki/Inflection_point
http://en.wikipedia.org/wiki/Maxima_and_minima
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Finding Turning Points

Example (f(x) = 2x4 + 5x3 continued)

• The second order derivative is: f ′′(x) = 24x2 + 30x

• We need to evaluate f ′′(x) at the values of x we identified as
turning points:

• f ′′(0) = 0 =⇒ a point of inflection More

• f ′′(−1.875) = 24× (−1.875)2 − 30× 1.875 = 28.125 > 0
=⇒ a minimum More

x

f(x)

-1.875

http://en.wikipedia.org/wiki/Inflection_point
http://en.wikipedia.org/wiki/Maxima_and_minima
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Your turn to find Maxima and Minima. . .

Given f(x) = 9x2 + x3, previously you found f ′(x) = 18x + 3x2.

• To find the turning points set f ′(x) = 0:

3x(6 + x) = 0

• This occurs when either:
•

3x = 0 =⇒ x = 0

or
•

6 + x = 0 =⇒ x = −6

• Second order derivative: f ′′(x) =

18 + 6x

. Evaluate this at
the possible turning points:

•

f ′′(0) = 18 > 0 =⇒ a minimum

•

f ′′(−6) = 18 + 6× (−6) = −18 < 0 =⇒ a maximum

x

f(x)

-6
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Maximising Utility

• An investor gains what is known as utility from increasing
his/her wealth (think of utility as simply, enjoyment).

• You can define someones utility as a function of wealth.

Example (Your turn: U(w) = 4w − 1
10
w2)

• Differentiate U with respect to w:

U ′(w) = 4− 2

10
w.

• Set U ′(w) = 0 to find the critical points:

2

10
w = 4 =⇒ w = 20.

• w =

20

gives the theoretical level of wealth for this investor
that will maximise their utility.
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Applications in Business

• The ubiquitous Cobb-Douglas production function uses
exponentials and logs More

• The formal interpretation of regression coefficients in
econometrics requires differentiation More

• Differentiation to finding maxima is used for constrained
optimisation in operations management More

• Marginal benefits and marginal costs can be derived using
differentiation More

http://en.wikipedia.org/wiki/Cobb-Douglas
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Lagrange_multipliers
http://en.wikipedia.org/wiki/Marginal_concepts
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Summary

• Functions, log and exponential functions

• Differentiation tells us about the behaviour of the function

• The derivative of a single variable function is the tangent

• The derivative can be interpreted as the “rate of change” of
the function

• Chain rule, product rule, quotient rule

• Finding maxima and minima

• Applications in Business
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Summary of Differentiation Identities

Function Derivative

f(x) = axn f ′(x) = anxn−1

f(x) = a (some constant) f ′(x) = 0

f(x) = exp{g(x)} f ′(x) = g′(x) · exp{g(x)}

y = log{f(x)} dy

dx
=

f ′(x)

f(x)

y = f(u), u = g(x)
dy

dx
=

dy

du
· du
dx

y = uv, u = g(x), v = h(x)
dy

dx
= u · dv

dx
+ v · du

dx

y =
u

v
, u = g(x), v = h(x) dy

dx
=

v · du
dx
− u · dv

dx
v2

More

http://en.wikipedia.org/wiki/List_of_differentiation_identities
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Additional Resources

• Test your knowledge at the University of Sydney Business
School MathQuiz:
http://quiz.econ.usyd.edu.au/mathquiz

• Additional resources on the Maths in Business website
sydney.edu.au/business/learning/students/maths

• The University of Sydney Mathematics Learning Centre has a
number of additional resources:

• Maths Learning Centre algebra workshop notes More

• Other Maths Learning Centre Resources More

• The Department of Mathematical Sciences and the
Mathematics Learning Support Centre at Loughborough
University have a fantastic website full of resources. More

• There’s also tonnes of theory, worked questions and additional
practice questions online. All you need to do is Google the
topic you need more practice with! More

http://quiz.econ.usyd.edu.au/mathquiz/
http://quiz.econ.usyd.edu.au/mathquiz/
http://quiz.econ.usyd.edu.au/mathquiz
http://sydney.edu.au/business/learning/students/maths/additional_resources
http://sydney.edu.au/stuserv/maths_learning_centre/
http://sydney.edu.au/stuserv/documents/maths_learning_centre/algebraskills.pdf
http://sydney.edu.au/stuserv/documents/maths_learning_centre/algebraskills.pdf
http://sydney.edu.au/stuserv/maths_learning_centre/resource.shtml
http://sydney.edu.au/stuserv/maths_learning_centre/resource.shtml
http://www.mathcentre.ac.uk/
http://www.mathcentre.ac.uk/
http://www.google.com
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