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Functions

Definition (Function)

A function, f , is a mapping from one value, X, to another value,
Z:

f : X 7→ Z.

Think of the function, f , as a machine that takes an input, X,
then transforms it in some way and outputs the result: Z. More

Example (f(x) = 2x− 3)

The function f(x) = 2x− 3 has the following mapping:

• f(3) = 2× 3− 3 = 3 so f(x) maps 3 to 3.

• f(2) = 2× 2− 3 = 1 so f(x) maps 2 to 1.

• f(1) = 2× 1− 3 = −1 so f(x) maps 1 to −1.

• f(0) = 2× 0− 3 = −3 so f(x) maps 0 to −3.

http://en.wikipedia.org/wiki/Function_(mathematics)
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A function, f , is a mapping from one value, X, to another value,
Z:

f : X 7→ Z.

Think of the function, f , as a machine that takes an input, X,
then transforms it in some way and outputs the result: Z. More

Example (Where have we seen functions before?)

We’ve been working with functions already:

• Linear Functions: f(x) = ax+ b

• Quadratic Functions: f(x) = ax2 + bx+ c (today’s lesson)

• Sometimes functions are written as y = f(x). For example
you may see, y = ax+ b instead of f(x) = ax+ b.
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Quadratic Function

Definition (Quadratic Function)

A quadratic function takes the form:

f(x) = ax2 + bx+ c

where a, b and c are parameters and x is a variable. More

Key point

The key point is that there is a term in the function involving the
square of the variable, x2.

Definition (Parabola)

The graph of a quadratic functions is a curve often referred to as a
parabola. More

http://en.wikipedia.org/wiki/Quadratic_function
http://en.wikipedia.org/wiki/Parabola
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Factorising quadratic function

Definition (Factorisation)

Quadratic functions can be factorised to take the form:

f(x) = (x+ d)(x+ e) (factorised)

= (x+ d)x+ (x+ d)e

= x2 + dx+ xe+ de

= x2 + (d+ e)x+ de (expanded) More

Example (Expand the following factorised quadratic)

(x− 2)(x+ 1) =

(x− 2)x+ (x− 2)× 1

= x2 − 2x+ x− 2

= x2 − x− 2

http://en.wikipedia.org/wiki/Factorization
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Factorising quadratic functions

Example (Factorise f(x) = x2 + 12x+ 32)

We factorise this to (x+ d)(x+ e) by matching the expansion:

x2 + (d+ e)x+ de

with our example:
x2 + 12x+ 32.

I.e. we try to find factors d and e such that:

P Their product is de = 32 so that the constants match.

S Their sum is d+ e = 12 so the coefficients of x match.

F The factors are the two numbers whose sum is 12 and their
product is 32. By trial and error we notice that 4 + 8 = 12
and 4× 8 = 32:

f(x) = (x+ 4)(x+ 8).
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Factorising a more complex quadratic

The general form for a quadratic function is:

f(x) = ax2 + bx+ c

Example (Factorise f(x) = 2x2 + 3x− 5)

Here we want to break up the middle term to help factorisation.
To do this we find two numbers whose:

P product is ac = 2×−5 = −10
S sum is b = 3

F Using trial and error we find suitable candidates −2 and 5.

We can then re-write the original equation as:

2x2 + 3x− 5 = 2x2−2x+ 5x− 5

= 2x(x− 1) + 5(x− 1)

= (2x+ 5)(x− 1)
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Your turn to factorise. . .

Factorise this expression

x2 + 5x+ 6

in the form (x+ d)(x+ e).

P Product:

Need two numbers that multiply to give 6

S Sum:

Need two numbers that sum to give 5

F Factors:

2 + 3 = 5 and 2× 3 = 6

Therefore the factorisation is:

(x+ 2)(x+ 3)

• You can verify this by expanding it out again!
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Factorising using the cross method

In general, we can factorised ex2 + fx+ g using

acx2 + (ad+ bc)x+ bd = (ax+ b)(cx+ d)

by finding a, b, c, d such that ac = e, bd = g and ad+ bc = f ,
using the cross method:

ax

dcx

b

check if ad+ cb = f

1. Pick an a and a c such that ac = e

2. Pick a b and a d such that bd = g

3. If ad+ cb = f then you have the solution.
If ad+ cb 6= f go back to Step 1.
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Your turn to factorise with a harder example. . .

2x2 + 11x+ 5

Method 1: Using a PSF-type approach:

P Product:

Need two numbers that multiply to give 2× 5 = 10

S Sum:

Need two numbers that sum to give 11

F Factors:

10 + 1 = 11 and 10× 1 = 10

We can use this to re-write the original expression:

2x2 + 11x+ 5 = 2x2 + x+ 10x+ 5

= x(2x+ 1) + 5(2x+ 1)

= (x+ 5)(2x+ 1).
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Your turn to factorise with a harder example. . .

2x2 + 11x+ 5

Method 2: the cross method to factorise this as:

acx2 + (ad+ bc)x+ bd = (ax+ b)(cx+ d)

Here we want to find a, b, c, d such that ac = 2, bd = 5 and
ad+ bc = 11.

ax = x

d = 1cx = 2x

b = 5

1. Pick a = 1 and c = 2 such that ac = 2

2. Pick b = 5 and d = 1 such that bd = 5

3. Check if ad+ cb = 11. Here 1× 1 + 5× 2 = 11, so we have a
solution: (x+ 5)(2x+ 1)
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Graphing quadratic functions

One way to graph quadratic functions would be to plot some
points and join them. Consider the function, f(x) = x2:

x f(x) = x2

−2 (−2)2 = 4

−1.5 (−1.5)2 = 2.25

−1 (−1)2 = 1

−0.5 (−0.5)2 = 0.25

0 02 = 0

0.5 (0.5)2 = 0.25

1 12 = 1

1.5 (1.5)2 = 2.25

2 22 = 4 x

f(x)

-2 -1 1 2

4

3

2

1

x2
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Graphing quadratic functions

Consider quadratic functions of the form y = ax2.

• What does a do?

x

f(x)

x2

3x2

1
2x

2

• a changes the “steepness” of the curve.
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Graphing quadratic functions

Consider quadratic functions of the form y = ax2.

x

f(x)

−x2

−3x2

−1
2x

2

• The sign of a determines whether the parabola is convex
(smile) or concave (frown). More

http://en.wikipedia.org/wiki/Convex_function
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Graphing quadratic functions

Consider quadratic functions of the form f(x) = x2 + c.

• What does c do?

x

f(x)

−0.5

0.5

1

1.5

x2

x2 + 1

x2 − 1
2

• c moves the curve up and down.
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Graphing quadratic functions

Consider quadratic functions of the form f(x) = ax2 + bx+ c

• What does b do?

x

f(x)

-1

-2

1

2

1 2 3-1-2-3

x2 + 3x

x2 − 3x

x2 − 3x+ 0.5

• b moves the curve from side to side
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Finding the roots graphically

Definition (Roots)

The point(s) at which the quadratic function crosses the x axis are
called the roots of the function. More

Example (Finding the roots of f(x) = x2 + 3x graphically)

x

f(x)

-1

-2

1

2

1 2 3-1-2-3

x2 + 3x

The roots occur at x = −3 and x = 0.

http://en.wikipedia.org/wiki/Polynomial
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Finding the roots algebraically

• The definition says that the roots are “The point(s) at which
the quadratic function crosses the x axis.”

• Mathematically this is when f(x) = 0.

• This is easiest to find using the factorised form of f(x).

Example (Finding the roots of f(x) = x2 + 3x)

1. Factorise f(x):
f(x) = x2 + 3x

= x(x+ 3).

2. Work out the values of x for which f(x) = 0 is true.
• When x = 0 then x(x+ 3) = 0.
• When x = −3 then x(x+ 3) = 0.

Therefore the roots are x = 0 and x = −3.
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What if there aren’t any roots?

The function x2 + 2x+ 1 doesn’t cross the x axis at all!

x

f(x)

-1

1

2

3

1 2 3-1-2-3

x2 + 2x+ 1

Definition (Discriminant)

The function f(x) = ax2 + bx+ c will only have root(s) if

b2 − 4ac ≥ 0.

• b2 − 4ac is known as the discriminant. More

http://en.wikipedia.org/wiki/Discriminant
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The Quadratic Formula

Definition (Quadratic Formula)

If the quadratic function f(x) = ax2 + bx+ c has roots, they can
always be found using the quadratic formula:

x =
−b±

√
b2 − 4ac

2a
. More

• Note that the square root of the discriminant is in the
quadratic formula.

• This result suggests why there are no real roots unless
b2 − 4ac ≥ 0. You cannot take the square root of a negative
number.1

1You actually can but the solution is an imaginary number! More

http://en.wikipedia.org/wiki/Quadratic_equation
http://en.wikipedia.org/wiki/Imaginary_number
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The Quadratic Formula

Example (Finding the roots of f(x) = x2 + 3x)

Here a = 1, b = 3 and c = 0 so

x =
−b±

√
b2 − 4ac

2a

=
−3±

√
32 − 4× 1× 0

2× 1

=
−3±

√
9− 0

2

=
−3± 3

2

=
−3 + 3

2
AND

−3− 3

2
= 0 AND − 3.

x

f(x)

-1

-2

1

2

1 2-1-2-3

x2 + 3x
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Other common functions

Example (Exponential function)

f(x) = aecx+b

where a, b, c and e
are constants

x

f(x)

1

ex

1
2e

x
e2x

• The graph of f(x) = ex is upward-sloping, and increases
faster as x increases. More

• The graph is always above the x-axis but gets arbitrarily close
to it for negative x: the x-axis is an asymptote. More

http://en.wikipedia.org/wiki/Exponential_function
http://en.wikipedia.org/wiki/Asymptote
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Other common functions

Example (Logarithmic function)

f(x) = a log(cx+b)

where a, b and c
are constants

x

f(x)

1

log(x)
1
2 log(x)

log(2x)

• The graph of f(x) = log(x) slowly grows to positive infinity
as x increases. More

• The graph is always to the right of the y-axis but gets
arbitrarily close to it for small x: the y-axis is an asymptote.

http://en.wikipedia.org/wiki/Logarithm
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Relationship between logs and exponentials

• In y = loga(b), a is known as the base of the log.

• We can change the base of the log using the relationship:

loga(b) =
logc(b)

logc(a)
.

• Using this relationship, it is clear that:

loga(a) =
logc(a)

logc(a)
= 1.

• If y = loga(x) then x = ay

• Equivalently, if y = ax then x = loga y.

• If the base is the same, then the log function is the inverse of
the exponential function:

aloga(x) = x just like
ax

a
= x.
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Natural Logs

• We typically work with log base e ≈ 2.7182818 . . ..

• loge(x) is often written as ln(x).

• If the base is left off the log, it’s assumed log(x) = loge(x)
(unless it’s on your calculator, in which case it means log10)

• Note that the usual relations hold:

y = ex

ln(y) = ln(ex) (taking loge of both sides)

ln(y) = x

• Also,

y = ln(x)

ey = eln(x) (exponentiating both sides)

ey = x
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Exponential and Log rules

Exponentiation: More

• a0 = 1 for all a 6= 0.

• a−1 =
1

a
• axay = ax+y

•
ax

ay
= ax−y

• (ax)y = axy

• (ab)x = axbx

Logarithms: More

• log(xy) = y log(x)

• log(xy) = log(x) + log(y)

• log

(
x

y

)
= log(xy−1) = log(x) + log(y−1) = log(x)− log(y)

• log(1) = 0

http://en.wikipedia.org/wiki/Exponentiation
http://en.wikipedia.org/wiki/Logarithm
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Your Turn . . .

Solve the following equations for x

1. ln(x) = 2 =⇒ x =

e2

2. log2
y
3 = 4 =⇒ y =

3× 24 = 48

Simplify the following expressions

1. eln 5 =

5

2. ln
√
e =

ln e1/2 = 1
2 ln e =

1
2

3. ex+lnx =

exelnx = exx

4. ln(1 + x)− ln(1− x) =

ln

(
1 + x

1− x

)

5.
ln(1 + x)

ln(e2)
=

ln(1 + x)

2 ln(e)
=

1

2
ln(1 + x)

6. log3 3
q =

q log3 3 = q
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Your Turn . . .

Solve the following equations for x

1. ln(x) = 2 =⇒ x = e2

2. log2
y
3 = 4 =⇒ y = 3× 24 = 48

Simplify the following expressions

1. eln 5 = 5

2. ln
√
e = ln e1/2 = 1

2 ln e =
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Solve the following equations for x

1. ln(2x+ 1) = ln(10− x)

exp{ln(2x+ 1)} = exp{ln(10− x)}
2x+ 1 = 10− x

x = 3

2. 23x+1 = 4x

23x+1 = 22x

log2(2
3x+1) = log2(2

2x)

3x+ 1 = 2x

x = −1

3. ln(2x+ 3) = 3

exp{ln(2x+ 3)} = e3

2x+ 3 = e3

x =
e3 − 3

2

4. 5x+1 = 200

ln(5x+1) = ln(200)

(x+ 1) ln(5) = ln(200)

x+ 1 =
ln(200)

ln(5)

x =
ln(200)

ln(5)
− 1
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Summary

• parameters and variables

• substitution and solving equations

• dependent vs independent variable

• linear function: f(x) = y = ax+ b

• slope (is it a parameter or a variable?)

• intercept (is it a parameter or a variable?)

• finding the equation for a linear function given a plot

• plotting a linear function given an equation

• recognising quadratic functions

• factorising and expanding quadratics

• finding the roots of a quadratic using x =
−b±

√
b2 − 4ac

2a
• graphs of quadratic equations (parabolas)
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Coming up. . .

Week 5: Simultaneous Equations and Inequalities

• Algebraic and graphical solutions to simultaneous equations

• Understanding and solving inequalities

Week 6: Differentiation

• Theory and rules of Differentiation

• Differentiating various functions and application of
Differentiation
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Additional Resources

• Test your knowledge at the University of Sydney Business
School MathQuiz:
http://quiz.econ.usyd.edu.au/mathquiz

• Additional resources on the Maths in Business website
sydney.edu.au/business/learning/students/maths

• The University of Sydney Mathematics Learning Centre has a
number of additional resources:

• Basic concepts in probability notes More

• Sigma notation notes More

• Permutations and combinations notes More

• There’s also tonnes of theory, worked questions and additional
practice questions online. All you need to do is Google the
topic you need more practice with! More

http://quiz.econ.usyd.edu.au/mathquiz/
http://quiz.econ.usyd.edu.au/mathquiz/
http://quiz.econ.usyd.edu.au/mathquiz
http://sydney.edu.au/business/learning/students/maths/additional_resources
http://sydney.edu.au/stuserv/maths_learning_centre/
http://sydney.edu.au/stuserv/documents/maths_learning_centre/basicprob.pdf
http://sydney.edu.au/stuserv/documents/maths_learning_centre/basicprob.pdf
http://sydney.edu.au/stuserv/documents/maths_learning_centre/sigma.pdf
http://sydney.edu.au/stuserv/documents/maths_learning_centre/sigma.pdf
http://sydney.edu.au/stuserv/documents/maths_learning_centre/counting2010web.pdf
http://sydney.edu.au/stuserv/documents/maths_learning_centre/counting2010web.pdf
http://www.google.com
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