Matrix Algebra for Econometrics and Statistics

Fundamentals	Quadratic Forms	Systems		Sums	Applications	Code
Matrix fu	ndamentals					
	$\mathbf{A} =$	$=\begin{bmatrix}a_{11}\\a_{21}\end{bmatrix}$	$a_{12} \\ a_{22}$	$\begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$		

- A matrix is a rectangular array of numbers.
- Size: (rows)×(columns). E.g. the size of A is 2×3 .
- The size of a matrix is also known as the dimension.
- The element in the *i*th row and *j*th column of \mathbf{A} is referred to as a_{ij} .
- The matrix **A** can also be written as $\mathbf{A} = (a_{ij})$.

Matrix addition and subtraction

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

Definition (Matrix Addition and Subtraction)

• Dimensions must match:

$$(\mathbf{r} \times \mathbf{c}) \pm (\mathbf{r} \times \mathbf{c}) \Longrightarrow (\mathbf{r} \times \mathbf{c})$$

- ${\bf A}$ and ${\bf B}$ are both 2×3 matrices, so

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{bmatrix}$$

• More generally we write:

$$\mathbf{A} \pm \mathbf{B} = (a_{ij}) \pm (b_{ij}).$$

Matrix multiplication

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}; \quad \mathbf{D} = \begin{bmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \\ d_{31} & d_{32} \end{bmatrix}$$

Definition (Matrix Multiplication)

• Inner dimensions need to match:

$$(\mathbf{r} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{p}) \Longrightarrow (\mathbf{r} \times \mathbf{p})$$

• A is a 2×3 and D is a 3×2 matrix, so the inner dimensions match and we have: $C = A \times D =$

$$\begin{bmatrix} a_{11}d_{11} + a_{12}d_{21} + a_{13}d_{31} & a_{11}d_{12} + a_{12}d_{22} + a_{13}d_{32} \\ a_{21}d_{11} + a_{22}d_{21} + a_{23}d_{31} & a_{21}d_{12} + a_{22}d_{22} + a_{23}d_{32} \end{bmatrix}$$

• Look at the pattern in the terms above.

Matrix multiplication

Fundamentals	Quadratic Forms		Code
Determin	ant		

Definition (General Formula)

- Let $\mathbf{C} = (c_{ij})$ be an $n \times n$ square matrix.
- Define a cofactor matrix, C_{ij}, be the determinant of the square matrix of order (n - 1) obtained from C by removing row i and column j multiplied by (-1)^{i+j}.
- For fixed *i*, i.e. focusing on one row: $det(\mathbf{C}) = \sum c_{ij}C_{ij}$.
- For fixed j, i.e. focusing on one column: $det(\mathbf{C}) = \sum c_{ij}C_{ij}$.
- Note that this is a recursive formula.
- The trick is to pick a row (or column) with a lot of zeros (or better yet, use a computer)!

More

2×2 determinant

Apply the general formula to a 2×2 matrix: $\mathbf{C} = \begin{vmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{vmatrix}$.

- Keep the first row fixed, i.e. set i = 1.
- General formula when i=1 and n=2: $\det(\mathbf{C})=\sum c_{1j}C_{1j}$
- When j = 1, C₁₁ is one cofactor matrix of C, i.e. the determinant after removing the first row and first column of C multiplied by (-1)^{i+j} = (-1)². So

$$C_{11} = (-1)^2 \det(c_{22}) = c_{22}$$

as c_{22} is a scalar and the determinant of a scalar is itself.

- $C_{12} = (-1)^3 \det(c_{21}) = -c_{21}$ as c_{21} is a scalar and the determinant of a scalar is itself.
- Put it all together and you get the familiar result:

$$\det(\mathbf{C}) = c_{11}C_{11} + c_{12}C_{12} = c_{11}c_{22} - c_{12}c_{21}$$

Fundamentais	Quadratic Forms			Applications	Code
$3 \times 3 \text{ det}$	erminant				
	В	$=\begin{bmatrix} b_{11} & b_{21} \\ b_{21} & b_{21} \end{bmatrix}$	$b_{12} b_{13}$		

$$\mathbf{B} = \begin{bmatrix} 11 & 12 & 10 \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

• Keep the first row fixed, i.e. set i = 1. General formula when i = 1 and n = 3:

$$\det(\mathbf{B}) = \sum_{j=1}^{3} b_{1j} B_{1j} = b_{11} B_{11} + b_{12} B_{12} + b_{13} B_{13}$$

• For example, B_{12} is the determinant of the matrix you get after removing the first row and second column of **B** multiplied by $(-1)^{i+j} = (-1)^{1+2} = -1$: $B_{12} = -\begin{vmatrix} b_{21} & b_{23} \\ b_{31} & b_{33} \end{vmatrix}$.

• det(**B**) =
$$b_{11} \begin{vmatrix} b_{22} & b_{23} \\ b_{32} & b_{33} \end{vmatrix} - b_{12} \begin{vmatrix} b_{21} & b_{23} \\ b_{31} & b_{33} \end{vmatrix} + b_{13} \begin{vmatrix} b_{21} & b_{22} \\ b_{31} & b_{32} \end{vmatrix}$$

Code

Sarrus' scheme for the determinant of a 3×3

• French mathematician: Pierre Frédéric Sarrus (1798-1861)

$$\det(\mathbf{B}) = \begin{vmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{vmatrix}$$
$$= b_{11} \begin{vmatrix} b_{22} & b_{23} \\ b_{32} & b_{33} \end{vmatrix} - b_{12} \begin{vmatrix} b_{21} & b_{23} \\ b_{31} & b_{33} \end{vmatrix} + b_{13} \begin{vmatrix} b_{21} & b_{22} \\ b_{31} & b_{32} \end{vmatrix}$$
$$= (b_{11}b_{22}b_{33} + b_{12}b_{23}b_{31} + b_{13}b_{21}b_{32})$$
$$- (b_{13}b_{22}b_{31} + b_{11}b_{23}b_{32} + b_{12}b_{21}b_{33})$$

Write the first two columns of the matrix again to the right of the original matrix. Multiply the diagonals together and then add or subtract.

$$\mathbf{A} = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}$$

• For a 2×2 matrix, det(A) is the oriented area¹ of the parallelogram with vertices at $\mathbf{0} = (0,0)$, $\mathbf{a} = (x_1, y_1)$, $\mathbf{a} + \mathbf{b} = (x_1 + x_2, y_1 + y_2)$, and $\mathbf{b} = (x_2, y_2)$.

• In a sense, the determinant "summarises" the information in the matrix.

¹The oriented area is the same as the usual area, except that it is negative when the vertices are listed in clockwise order.

Definition (Identity matrix)

• A square matrix, I, with ones on the main diagonal and zeros everywhere else:

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & & 0 & 0 \\ \vdots & \vdots & \ddots & & \vdots \\ 0 & 0 & 0 & & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

- Sometimes you see \mathbf{I}_r which indicates that it is an $r\times r$ identity matrix.
- If the size of I is not specified, it is assumed to be "conformable", i.e. as big as necessary.

Identity matrix

- An identity matrix is the matrix analogue of the number 1.
- If you multiply any matrix (or vector) with a conformable identity matrix the result will be the same matrix (or vector).

Example (2×2)

$$\mathbf{AI} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} \times 1 + a_{12} \times 0 & a_{11} \times 0 + a_{12} \times 1 \\ a_{21} \times 1 + a_{22} \times 0 & a_{21} \times 0 + a_{22} \times 1 \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \mathbf{A}.$$

Fundamentals	Quadratic Forms		Code
Inverse			

Definition (Inverse)

- Requires a square matrix i.e. dimensions: $r \times r$
- For a 2×2 matrix, $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$,

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

• More generally, a square matrix A is invertible or nonsingular if there exists another matrix **B** such that

$$\mathbf{AB} = \mathbf{BA} = \mathbf{I}.$$

• If this occurs then B is uniquely determined by A and is denoted A^{-1} , i.e. $AA^{-1} = I$.

Fundamentais	Quadratic Forms		Applications	Code
Vectors				

Vectors are matrices with only one row or column. For example, the column vector:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Definition (Transpose Operator)

Turns columns into rows (and vice versa):

$$\mathbf{x}' = \mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

Example (Sum of Squares)

$$\mathbf{x}'\mathbf{x} = \sum_{i=1}^{n} x_i^2$$

Fundamentals	Quadratic Forms	Systems	Sums	Applications	Code
Transpose					
Say we h	have some $m imes n$	matrix:			
		$\begin{bmatrix} a_{11} & a_1 \end{bmatrix}$	$_2 \cdots a_1$	"]	

$$\mathbf{A} = (a_{ij}) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Definition (Transpose Operator)

• Flips the rows and columns of a matrix:

$$\mathbf{A}' = (a_{ji})$$

- The subscripts gets swapped.
- \mathbf{A}' is a $n \times m$ matrix: the columns in \mathbf{A} are the rows in \mathbf{A}' .

Fundamentals	Quadratic Forms		Code
Symmetry			

Definition (Square Matrix)

A matrix, ${\bf P}$ is square if it has the same number of rows as columns. I.e.

$$\dim(\mathbf{P}) = n \times n$$

for some $n \ge 1$.

Definition (Symmetric Matrix)

A square matrix, P is symmetric if it is equal to its transpose:

$$\mathbf{P}=\mathbf{P}'$$

Fundamentals	Quadratic Forms	Systems	Sums	Applications	Code
Idempotent					
Definition	(Idempotent)				

A square matrix, ${\bf P}$ is idempotent if when multiplied by itself, yields itself. I.e.

$$\mathbf{PP}=\mathbf{P}.$$

- 1. When an idempotent matrix is subtracted from the identity matrix, the result is also idempotent, i.e. $\mathbf{M} = \mathbf{I} \mathbf{P}$ is idempotent.
- 2. The trace of an idempotent matrix is equal to the rank.
- 3. $\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is an idempotent matrix.

Order of operations

- Matrix multiplication is non-commutative, i.e. the order of multiplication is important: $AB \neq BA$.
- Matrix multiplication is associative, i.e. as long as the order stays the same, (AB)C = A(BC).
- A(B+C) = AB + AC

•
$$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$$

Example

Let A be a $k \times k$ matrix and x and c be $k \times 1$ vectors:

$$A\mathbf{x} = \mathbf{c}$$

$$A^{-1}A\mathbf{x} = A^{-1}\mathbf{c} \qquad (PRE-multiply both sides by A^{-1})$$

$$I\mathbf{x} = A^{-1}\mathbf{c}$$

$$\mathbf{x} = A^{-1}\mathbf{c}$$
Note: $A^{-1}\mathbf{c} \neq \mathbf{c}A^{-1}$

Matrix Differentiation

If β and \mathbf{a} are both $k \times 1$ vectors then, $\frac{\partial \beta' \mathbf{a}}{\partial \beta} = \mathbf{a}$.

Proof.

$$\frac{\partial}{\partial \boldsymbol{\beta}} \left(\boldsymbol{\beta}' \mathbf{a} \right) = \frac{\partial}{\partial \boldsymbol{\beta}} \left(\beta_1 a_1 + \beta_2 a_2 + \ldots + \beta_k a_k \right)$$
$$= \begin{bmatrix} \frac{\partial}{\partial \beta_1} \left(\beta_1 a_1 + \beta_2 a_2 + \ldots + \beta_k a_k \right) \\ \frac{\partial}{\partial \beta_2} \left(\beta_1 a_1 + \beta_2 a_2 + \ldots + \beta_k a_k \right) \\ \vdots \\ \frac{\partial}{\partial \beta_k} \left(\beta_1 a_1 + \beta_2 a_2 + \ldots + \beta_k a_k \right) \end{bmatrix}$$
$$= \mathbf{a}$$

Fundamentals	Quadratic Form	is Systems	Sums	Applications	Cod
Matrix	Differentiatio	on			
Let	$oldsymbol{eta}$ be a $k imes 1$ vec	tor and ${f A}$ be a	$k \times k$ symm	etric matrix the	en
		$rac{\partial oldsymbol{eta}' \mathbf{A} oldsymbol{eta}}{\partial oldsymbol{eta}} =$	$2\mathbf{A}\boldsymbol{eta}.$		
Pro	of.				
By r	means of proof, s	ay $oldsymbol{eta} = egin{pmatrix} eta_1 \ eta_2 \end{pmatrix}$ a	nd $\mathbf{A} = \begin{pmatrix} a_{12} \\ a_{12} \end{pmatrix}$	$\begin{pmatrix} 1 & a_{12} \\ 2 & a_{22} \end{pmatrix}$, then	
	$rac{\partial}{\partialoldsymbol{eta}}\left(oldsymbol{eta}'\mathbf{A}oldsymbol{eta} ight)$	$=rac{\partial}{\partialoldsymbol{eta}}\left(eta_1^2a_{11}+ ight.$	$2a_{12}\beta_1\beta_2 +$	$\beta_2^2 a_{22} \big)$	
		$= \begin{bmatrix} \frac{\partial}{\partial\beta_1} \left(\beta_1^2 a_{11} \\ \frac{\partial}{\partial\beta_2} \left(\beta_1^2 a_{11} \right) \end{bmatrix}$	$+ 2a_{12}\beta_1\beta_2 + + 2a_{12}\beta_1\beta_2 + $	$\left.+ \beta_2^2 a_{22}\right) \\ \left.+ \beta_2^2 a_{22}\right) \right]$	
		$= \begin{bmatrix} 2\beta_1 a_{11} + 2a_{12} \\ 2\beta_1 a_{12} + 2a_{12} \end{bmatrix}$	$\begin{bmatrix} \iota_{12}\beta_2\\ \iota_{22}\beta_2 \end{bmatrix}$		
		$=2\mathbf{A}\boldsymbol{\beta}$			

 $= \mathbf{A}.$

- Rank
 - The rank of a matrix A is the maximal number of linearly independent rows or columns of A.
 - A family of vectors is linearly independent if none of them can be written as a linear combination of finitely many other vectors in the collection.

 \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 are independent but $\mathbf{v}_4 = \mathbf{v}_1 - \mathbf{v}_2 - \mathbf{v}_3$.

- - The maximum rank of an $m \times n$ matrix is $\min(m, n)$.
 - A full rank matrix is one that has the largest possible rank, i.e. the rank is equal to either the number of rows or columns (whichever is smaller).
 - In the case of an $n \times n$ square matrix **A**, then **A** is invertible if and only if A has rank n (that is, A has full rank).
 - For some $n \times k$ matrix, **X**, rank(**X**) = rank(**X**'**X**)
 - This is why the dummy variable trap exists, you need to drop one of the dummy categories otherwise \mathbf{X} is not of full rank and therefore you cannot find the inverse of $\mathbf{X}'\mathbf{X}$.

Fundamentals	Quadratic Forms	Systems	Sums	Applications	Code
Trace					

Definition

The trace of an $n \times n$ matrix **A** is the sum of the elements on the main diagonal: $tr(\mathbf{A}) = a_{11} + a_{22} + \ldots + a_{nn} = \sum_{i=1}^{n} a_{ii}$.

Properties

•
$$\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$$

•
$$\operatorname{tr}(c\mathbf{A}) = c\operatorname{tr}(\mathbf{A})$$

- If ${\bf A}$ is an $m\times n$ matrix and ${\bf B}$ is an $n\times m$ matrix then ${\rm tr}({\bf AB})={\rm tr}({\bf BA})$
- More generally, for conformable matrices:

$$\operatorname{tr}(\mathbf{ABC}) = \operatorname{tr}(\mathbf{CAB}) = \operatorname{tr}(\mathbf{BCA})$$

BUT: $tr(ABC) \neq tr(ACB)$. You can only move from the front to the back (or back to the front)!

Fundamentais	Quadratic Forms		Applications	Code
Eigenvalues				

• An eigenvalue λ and an eigenvector $\mathbf{x} \neq \mathbf{0}$ of a square matrix \mathbf{A} is defined as

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}.$$

• Since the eigenvector ${\bf x}$ is different from the zero vector (i.e. ${\bf x} \neq {\bf 0})$ the following is valid:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0} \implies \det(\mathbf{A} - \lambda \mathbf{I}) = 0.$$

- We know $det(\mathbf{A} \lambda \mathbf{I}) = 0$ because:
 - if $(\mathbf{A} \lambda \mathbf{I})^{-1}$ existed, we could just pre multiply both sides by $(\mathbf{A} \lambda \mathbf{I})^{-1}$ and get the solution $\mathbf{x} = \mathbf{0}$.
 - but we have assumed $\mathbf{x} \neq \mathbf{0}$ so we require that $(\mathbf{A} \lambda \mathbf{I})$ is NOT invertible which implies² that $det(\mathbf{A} \lambda \mathbf{I}) = 0$.
- To find the eigenvalues, we can solve $det(\mathbf{A} \lambda \mathbf{I}) = 0$.

 $^{^{2}\}mbox{A}$ matrix is invertible if and only if the determinant is non-zero

Fundamentals	Quadratic Forms	Systems	Sums	Applications	Code
Eigenvalues					

Example (Finding eigenvalues)

Say $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. We can find the eigenvalues of \mathbf{A} by solving

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$
$$\det\left(\begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\right) = 0$$
$$\begin{vmatrix} 2 - \lambda & 1\\ 1 & 2 - \lambda \end{vmatrix} = 0$$
$$(2 - \lambda)(2 - \lambda) - 1 \times 1 = 0$$
$$\lambda^2 - 4\lambda + 3 = 0$$
$$(\lambda - 1)(\lambda - 3) = 0$$

The eigenvalues are the roots of this quadratic: $\lambda = 1$ and $\lambda = 3$.

Why do we care about eigenvalues?

- An $n \times n$ matrix A is positive definite if all eigenvalues of A, $\lambda_1, \lambda_2, \ldots, \lambda_n$ are positive. • Definiteness
- A matrix is negative-definite, negative-semidefinite, or positive-semidefinite if and only if all of its eigenvalues are negative, non-positive, or non-negative, respectively.
- The eigenvectors corresponding to different eigenvalues are linearly independent. So if a n × n matrix has n nonzero eigenvalues, it is of full rank.
- The trace of a matrix is the sum of the eigenvectors: $tr(\mathbf{A}) = \lambda_1 + \lambda_2 + \ldots + \lambda_n.$
- The determinant of a matrix is the product of the eigenvectors: $det(\mathbf{A}) = \lambda_1 \lambda_2 \cdots \lambda_n$.
- The eigenvectors and eigenvalues of the covariance matrix of a data set data are also used in principal component analysis (similar to factor analysis).

Determinant

Fundamentals	Quadratic Forms	Systems	Sums	Applications	Code
Useful rul	es				
• (A)	$\mathbf{B})' = \mathbf{B}'\mathbf{A}'$				
• det • det	$d(\mathbf{A}) = \det(\mathbf{A}')$ $d(\mathbf{A}\mathbf{B}) = \det(\mathbf{A}) d(\mathbf{A})$	$et(\mathbf{B})$			
• det	$\mathbf{A}(\mathbf{A}^{-1}) = \frac{1}{\mathbf{A}^{-1}(\mathbf{A})}$				
• AI	$= \mathbf{A} \text{ and } \mathbf{xI} = \mathbf{x}$		0. 1 /		
• If <i>(</i> :	$m{3}$ and $f{a}$ are both k	x imes 1 vectors	s, $\frac{\partial \boldsymbol{\beta}' \mathbf{a}}{\partial \boldsymbol{\beta}} = \mathbf{a}$	L	
• If <i>I</i>	${f A}$ is a $n imes k$ matri	x, $\frac{\partial \mathbf{A} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}'} = \mathbf{A}$	A		
• If <i>I</i>	${f A}$ is a $k imes k$ symm	<mark>etric</mark> matrix	, $\frac{\partial oldsymbol{eta}' \mathbf{A} oldsymbol{eta}}{\partial oldsymbol{eta}} =$	$2\mathbf{A}\boldsymbol{eta}$	
• If <i>I</i>	A is a $k \times k$ (not i	necessarily s	ymmetric) n	natrix,	

 $\frac{\partial \boldsymbol{\beta}' \mathbf{A} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}} = (\mathbf{A} + \mathbf{A}') \boldsymbol{\beta}$

• A quadratic form on \mathbb{R}^n is a real-valued function of the form

$$Q(x_1,\ldots,x_n) = \sum_{i \le j} a_{ij} x_i x_j.$$

• E.g. in \mathbb{R}^2 we have $Q(x_1, x_2) = a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2$.

• Quadratic forms can be represented by a *symmetric* matrix **A** such that:

$$Q(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x}$$

• E.g. if $\mathbf{x} = (x_1, x_2)'$ then

(

$$Q(\mathbf{x}) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} \\ \frac{1}{2}a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= a_{11}x_1^2 + \frac{1}{2}(a_{12} + a_{21})x_1x_2 + a_{22}x_2^2$$

but \mathbf{A} is symmetric, i.e. $a_{12} = a_{21}$, so we can write,

$$= a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2.$$

Quadratic forms

If $\mathbf{x} \in \mathbb{R}^3$, i.e. $\mathbf{x} = (x_1, x_2, x_3)'$ then the general three dimensional quadratic form is:

$$Q(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x}$$

$$= \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} & \frac{1}{2}a_{13} \\ \frac{1}{2}a_{12} & a_{22} & \frac{1}{2}a_{23} \\ \frac{1}{2}a_{13} & \frac{1}{2}a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3.$$

Quadratic Forms and Sum of Squares

Recall sums of squares can be written as $\mathbf{x}'\mathbf{x}$ and quadratic forms are $\mathbf{x}'\mathbf{A}\mathbf{x}$. Quadratic forms are like generalised and weighted sum of squares. Note that if $\mathbf{A} = \mathbf{I}$ then we recover the sums of squares exactly.

Definiteness of quadratic forms

- A quadratic form always takes on the value zero at the point $\mathbf{x}=\mathbf{0}.$ This is not an interesting result!
- For example, if x ∈ ℝ, i.e. x = x₁ then the general quadratic form is ax₁² which equals zero when x₁ = 0.
- Its distinguishing characteristic is the set of values it takes when $\mathbf{x} \neq \mathbf{0}.$
- We want to know if $\mathbf{x} = \mathbf{0}$ is a max, min or neither.
- Example: when $\mathbf{x} \in \mathbb{R}$, i.e. the quadratic form is ax_1^2 ,
 - a > 0 means $ax^2 \ge 0$ and equals 0 only when x = 0. Such a form is called positive definite; x = 0 is a global minimiser.
 - a < 0 means $ax^2 \le 0$ and equals 0 only when x = 0. Such a form is called negative definite; x = 0 is a global maximiser.

Positive definite

If
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 then $Q_1(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x} = x_1^2 + x_2^2$.

- Q_1 is greater than zero at $\mathbf{x} \neq \mathbf{0}$ i.e. $(x_1, x_2) \neq (0, 0)$.
- The point $\mathbf{x} = \mathbf{0}$ is a global minimum.
- Q_1 is called positive definite.

Figure 1: $Q_1(x_1, x_2) = x_1^2 + x_2^2$

Negative definite

If
$$\mathbf{A} = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}$$
 then $Q_2(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x} = -x_1^2 - x_2^2$.

- Q_2 is less than zero at $\mathbf{x} \neq \mathbf{0}$ i.e. $(x_1, x_2) \neq (0, 0)$.
- The point $\mathbf{x} = \mathbf{0}$ is a global maximum.
- Q_2 is called negative definite.

Figure 2: $Q_2(x_1, x_2) = -x_1^2 - x_2^2$

Fundamentals	Quadratic Forms	Systems	Sums	Applications	Code
Indefinite					
If $\mathbf{A} = \left($	$\left(egin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} ight)$ then ${\cal G}$	$Q_3(\mathbf{x}) = \mathbf{x}' \mathbf{A}$	$\mathbf{A}\mathbf{x} = x_1^2 - z$	x_2^2 .	
• Q ₃ (can be take both _l	positive and	l negative va	alues.	

- E.g. $Q_3(1,0) = +1$ and $Q_3(0,1) = -1$.
- Q₃ is called indefinite.

Figure 3: $Q_3(x_1, x_2) = x_1^2 - x_2^2$

Positive semidefinite

If
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 then $Q_4(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x} = x_1^2 + 2x_1 x_2 + x_2^2$.

• Q_4 is always ≥ 0 but does equal zero at some $\mathbf{x} \neq \mathbf{0}$.

• E.g.
$$Q_4(10, -10) = 0$$

• Q_4 is called positive semidefinite.

Figure 4: $Q_4(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2$

Negative semidefinite

If
$$\mathbf{A} = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}$$
 then $Q_5(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x} = -(x_1 + x_2)^2$.

• Q_4 is always ≤ 0 but does equal zero at some $\mathbf{x} \neq \mathbf{0}$

• E.g.
$$Q_5(10, -10) = 0$$

• Q_5 is called negative semidefinite.

Figure 5: $Q_5(x_1, x_2) = -(x_1 + x_2)^2$

✤ Code

Definite symmetric matrices

A symmetric matrix, A, is called positive definite, positive semidefinite, negative definite, etc. according to the definiteness of the corresponding quadratic form $Q(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x}$.

Definition

Let A be a $n \times n$ symmetric matrix, then A is

- 1. positive definite if $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n
- 2. positive semidefinite if $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n
- 3. negative definite if $\mathbf{x}' \mathbf{A} \mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n
- 4. negative semidefinite if $\mathbf{x}' \mathbf{A} \mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n
- 5. indefinite if $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$ for some $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n and < 0 for some other x in \mathbb{R}^n
 - We can check the definiteness of a matrix by show that one of these definitions holds as in the example Example
 - You can find the eigenvalues to check definiteness

How else to check for definiteness?

You can check the sign of the sequence of determinants of the leading principal minors:

Positive Definite

An $n \times n$ matrix **M** is positive definite if all the following matrices have a positive determinant:

- the top left 1×1 corner of **M** (1st order principal minor)
- the top left 2×2 corner of ${f M}$ (2nd order principal minor)
- M itself.

In other words, all of the leading principal minors are positive.

Negative Definite

A matrix is negative definite if all kth order leading principal minors are negative when k is odd and positive when k is even.

Why do we care about definiteness?

Useful for establishing if a (multivariate) function has a maximum, minimum or neither at a critical point.

• If we have a function, f(x), we can show that a minimum exists at a critical point, i.e. when f'(x) = 0, if f''(x) > 0.

Example $(f(x) = 2x^2)$

•
$$f'(x) = 4x$$

•
$$f'(x) = 0 \implies x = 0$$

• $f''(x) = 4 > 0 \implies \text{minimum at } x = 0.$

Why do we care about definiteness?

- In the special case of a univariate function f''(x) is a 1×1 Hessian matrix and showing that f''(x) > 0 is equivalent to showing that the Hessian is positive definite.
- If we have a bivariate function f(x, y) we find critical points when the first order partial derivatives are equal to zero:
 - 1. Find the first order derivatives and set them equal to zero
 - 2. Solve simultaneously to find critical points
- We can check if max or min or neither using the Hessian matrix, **H**, the matrix of second order partial derivatives:

$$\mathbf{H} = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$$

- 1. (If necessary) evaluate the Hessian at a critical point
- 2. Check if \mathbf{H} is positive or negative definite:
- Check definiteness
- $|\mathbf{H}| > 0$ and $f_{xx} > 0 \implies$ positive definite \implies minimum
- $|\mathbf{H}| > 0$ and $f_{xx} < 0 \implies$ negative definite \implies maximum
- 3. Repeat for all critical points

Why do we care about definiteness?

- If we find the second order conditions and show that it is a positive definite matrix then we have shown that we have a minimum.
- Positive definite matrices are non-singular, i.e. we can invert them. So if we can show $\mathbf{X}'\mathbf{X}$ is positive definiteness, we can find $[\mathbf{X}'\mathbf{X}]^{-1}$.
- Application: showing that the Ordinary Least Squares (OLS) minimises the sum of squared residuals.

• A system of equations:

$$y_{1} = x_{11}b_{1} + x_{12}b_{2} + \ldots + x_{1k}b_{k}$$

$$y_{2} = x_{21}b_{1} + x_{22}b_{2} + \ldots + x_{2k}b_{k}$$

$$\vdots$$

$$y_{n} = x_{n1}b_{1} + x_{n2}b_{2} + \ldots + x_{nk}b_{k}$$

• The matrix form:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}$$

•

Matrices as systems of equations

• More succinctly: $\mathbf{y} = \mathbf{X} \mathbf{b}$ where

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}; \quad \mathbf{x}_i = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ik} \end{bmatrix}$$

for $i = 1, 2, \ldots, n$ and

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \vdots \\ \mathbf{x}_n' \end{bmatrix}$$

• \mathbf{x}_i is the "covariate vector" for the *i*th observation.

٠

Matrices as systems of equations

• We can write $\mathbf{y} = \mathbf{X} \mathbf{b}$ as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \vdots \\ \mathbf{x}_n' \end{bmatrix} \mathbf{b}.$$

• Returning to the original system, we can write each individual equation using vectors:

$$y_1 = \mathbf{x}'_1 \mathbf{b}$$
$$y_2 = \mathbf{x}'_2 \mathbf{b}$$
$$\vdots$$
$$y_n = \mathbf{x}'_n \mathbf{b}$$

Mixing matrices, vectors and summation notation

Often we want to find $\mathbf{X'u}$ or $\mathbf{X'X}$. A convenient way to write this is as a sum of vectors. Say we have a 3×2 matrix \mathbf{X} :

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \mathbf{x}_3' \end{bmatrix}; \quad \mathbf{x}_i = \begin{bmatrix} x_{i1} \\ x_{i2} \end{bmatrix}; \text{ and } \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

We can write,

$$\mathbf{X'u} = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
$$= \begin{bmatrix} x_{11}u_1 + x_{21}u_2 + x_{31}u_3 \\ x_{12}u_1 + x_{22}u_2 + x_{32}u_3 \end{bmatrix}$$
$$= \mathbf{x}_1u_1 + \mathbf{x}_2u_2 + \mathbf{x}_3u_3$$
$$= \sum_{i=1}^3 \mathbf{x}_i u_i$$

In a similar fashion, you can also show that $\mathbf{X'X} = \sum_{i=1}^{3} \mathbf{x}_i \mathbf{x}'_i.$

$$\mathbf{X'X} = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \mathbf{x}_3' \end{bmatrix}$$
$$= \mathbf{x}_1 \mathbf{x}_1' + \mathbf{x}_2 \mathbf{x}_2' + \mathbf{x}_3 \mathbf{x}_3'$$
$$= \sum_{i=1}^3 \mathbf{x}_i \mathbf{x}_i'$$

Application: variance-covariance matrix

- For the univariate case, $\operatorname{var}(Y) = \mathbb{E}\left([Y \mu]^2\right)$.
- In the multivariate case ${f Y}$ is a vector of n random variables.
- Without loss of generality, assume ${\bf Y}$ has mean zero, i.e. $\mathbb{E}({\bf Y})=\mu=0.$ Then,

$$\operatorname{cov}(\mathbf{Y}, \mathbf{Y}) = \operatorname{var}(\mathbf{Y}) = \mathbb{E}\left(\begin{bmatrix}\mathbf{Y} - \boldsymbol{\mu}\end{bmatrix} \begin{bmatrix}\mathbf{Y} - \boldsymbol{\mu}\end{bmatrix}'\right)$$
$$= \mathbb{E}\left(\begin{bmatrix}Y_1\\Y_2\\\vdots\\Y_n\end{bmatrix} \begin{bmatrix}Y_1 & Y_2 & \cdots & Y_n\end{bmatrix}\right)$$
$$= \mathbb{E}\begin{bmatrix}Y_1^2 & Y_1Y_2 & \cdots & Y_1Y_n\\Y_2Y_1 & Y_2^2 & \cdots & Y_2Y_n\\\vdots & \vdots & & \vdots\\Y_nY_1 & Y_nY_2 & \cdots & Y_n^2\end{bmatrix}$$

• Hence, we have a variance-covariance matrix:

$$\operatorname{var}(\mathbf{Y}) = \begin{bmatrix} \operatorname{var}(Y_1) & \operatorname{cov}(Y_1, Y_2) & \cdots & \operatorname{cov}(Y_1, Y_n) \\ \operatorname{cov}(Y_2, Y_1) & \operatorname{var}(Y_2) & \cdots & \operatorname{cov}(Y_2, Y_n) \\ \vdots & \vdots & & \vdots \\ \operatorname{cov}(Y_n, Y_1) & \operatorname{cov}(Y_n, Y_2) & \cdots & \operatorname{var}(Y_n) \end{bmatrix}$$

٠

• What if we weight the random variables with a vector of constants, a?

$$\begin{aligned} \operatorname{var}(\mathbf{a}'\mathbf{Y}) &= \mathbb{E}\left([\mathbf{a}'\mathbf{Y} - \mathbf{a}'\boldsymbol{\mu}][\mathbf{a}'\mathbf{Y} - \mathbf{a}'\boldsymbol{\mu}]'\right) \\ &= \mathbb{E}\left(\mathbf{a}'[\mathbf{Y} - \boldsymbol{\mu}](\mathbf{a}'[\mathbf{Y} - \boldsymbol{\mu}])'\right) \\ &= \mathbb{E}\left(\mathbf{a}'[\mathbf{Y} - \boldsymbol{\mu}][\mathbf{Y} - \boldsymbol{\mu}]'\mathbf{a}\right) \\ &= \mathbf{a}'\mathbb{E}\left([\mathbf{Y} - \boldsymbol{\mu}][\mathbf{Y} - \boldsymbol{\mu}]'\right)\mathbf{a} \\ &= \mathbf{a}'\operatorname{var}(\mathbf{Y})\mathbf{a} \end{aligned}$$

Application: variance of sums of random variables

Let $\mathbf{Y} = (Y_1,Y_2)'$ be a vector of random variables and $\mathbf{a} = (a_1,a_2)'$ be some constants,

$$\mathbf{a'Y} = \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = a_1 Y_1 + a_2 Y_2$$

Now, $\operatorname{var}(a_1Y_1 + a_2Y_2) = \operatorname{var}(\mathbf{a'Y}) = \mathbf{a'}\operatorname{var}(\mathbf{Y})\mathbf{a}$ where

$$\operatorname{var}(\mathbf{Y}) = \begin{bmatrix} \operatorname{var}(Y_1) & \operatorname{cov}(Y_1, Y_2) \\ \operatorname{cov}(Y_1, Y_2) & \operatorname{var}(Y_2) \end{bmatrix},$$

is the (symmetric) variance-covariance matrix.

$$\operatorname{var}(\mathbf{a}'\mathbf{Y}) = \mathbf{a}'\operatorname{var}(\mathbf{Y})\mathbf{a}$$
$$= \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} \operatorname{var}(Y_1) & \operatorname{cov}(Y_1, Y_2) \\ \operatorname{cov}(Y_1, Y_2) & \operatorname{var}(Y_2) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
$$= a_1^2\operatorname{var}(Y_1) + a_2^2\operatorname{var}(Y_2) + 2a_1a_2\operatorname{cov}(Y_1, Y_2)$$

OLS estimator $\hat{\beta}$. Show that $\hat{\beta}$ achieves a minimum.

• The OLS estimator β minimises the sum of squared residuals, $\mathbf{u}'\mathbf{u} = \sum_{i=1}^{n} u_i^2$ where $\mathbf{u} = \mathbf{y} - \mathbf{X}\boldsymbol{\beta}$ or $u_i = y_i - \mathbf{x}'_i\boldsymbol{\beta}$.

Applications

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \mathbf{x}'_i \boldsymbol{\beta})^2 = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$
$$= \mathbf{y}' \mathbf{y} - 2\mathbf{y}' \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}' \mathbf{X}' \mathbf{X}\boldsymbol{\beta}.$$

• Take the first derivative of $S(\boldsymbol{\beta})$ and set it equal to zero:

$$\frac{\partial S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = 0 \implies \mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}.$$

• Assuming X (and therefore $\mathbf{X}'\mathbf{X})$ is of full rank (so is $\mathbf{X}'\mathbf{X}$ invertible) we get,

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

Application: Given a linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$ derive the OLS estimator $\hat{\boldsymbol{\beta}}$. Show that $\hat{\boldsymbol{\beta}}$ achieves a minimum.

• For a minimum we need to use the second order conditions:

$$\frac{\partial^2 S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} = 2\mathbf{X}'\mathbf{X}.$$

 The solution will be a minimum if X'X is a positive definite matrix. Let q = c'X'Xc for some c ≠ 0. Then

$$q = \mathbf{v}' \mathbf{v} = \sum_{i=1}^{n} v_i^2$$
, where $\mathbf{v} = \mathbf{X} \mathbf{c}$.

- Unless v = 0, q is positive. But, if v = 0 then v or c would be a linear combination of the columns of X that equals 0 which contradicts the assumption that X has full rank.
- Since c is arbitrary, q is positive for every $c \neq 0$ which establishes that X'X is positive definite.
- Therefore, if X has full rank, then the least squares solution $\hat{\beta}$ is unique and minimises the sum of squared residuals.

Matrix Operations						
Operation	R	Matlab				
$\mathbf{A} = \left[\begin{array}{cc} 5 & 7 \\ 10 & 2 \end{array} \right]$	A=matrix(c(5,7,10,2), ncol=2,byrow=T)	A = [5,7;10,2]				
$\det(\mathbf{A})$	det(A)	det(A)				
\mathbf{A}^{-1}	solve(A)	inv(A)				
$\mathbf{A} + \mathbf{B}$	A + B	A + B				
AB	A %*% B	A * B				
\mathbf{A}'	t(A)	Α'				

Fundamentals	Quadratic Forms	Systems	Sums	Applications	Code
Matrix Oper	rations				
Operation	R		Mat	lab	
eigenvalues & eigenvectors	eigen(A)	[V,	E] = eig(A)	
covariance matrix of ${f X}$	var(X) c	or cov(X)	cov	(X)	
$\begin{array}{c} \text{estimate of} \\ \mathrm{rank}(\mathbf{A}) \end{array}$	qr(A)\$r	ank	ran	k(A)	
$r imes r$ identity matrix, \mathbf{I}_r	diag(1,	r)	eye	(r)	

	Quadratic Forms		Code
Matlab Co	ode		

I Figure 1

◄ Figure 2

Figure 1

```
[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);
surfc(x,y,x.^2 + y.^2)
ylabel('x_2')
xlabel('x_1')
zlabel('Q_1(x_1,x_2)')
```

Figure 2

```
[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);
surfc(x,y,-x.^2 - y.^2)
ylabel('x_2')
xlabel('x_1')
zlabel('Q_2(x_1,x_2)')
```

	Quadratic Forms		Code
Matlab C	ode		

Interview 4 Figure 3

◄ Figure 4

Figure 3

```
[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);
surfc(x,y,x.^2 - y.^2)
ylabel('x_2')
xlabel('x_1')
zlabel('Q_3(x_1,x_2)')
```

Figure 4

```
[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);
surfc(x,y,x.^2 + 2.*x.*y + y.^2)
ylabel('x_2')
xlabel('x_1')
zlabel('Q_4(x_1,x_2)')
```

Funda	mentals	Quadratic Forms	Systems	Sums	Applications	Code
Ma	atlab Coc	le				
	Figure 5				 ✓ Figure 5 	
	<pre>[x,y] = 1 surfc(x,y ylabel(');</pre>	meshgrid(-10 y,-(x+y).^2) x_2')	:0.75:10,-:	10:0.75:10));	

xlabel('x_1')

zlabel('Q_5(x_1,x_2)')