Matrix Algebra for Econometrics and Statistics

GARTH TARR
2011

Matrix fundamentals

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

- A matrix is a rectangular array of numbers.
- Size: (rows) \times (columns). E.g. the size of \mathbf{A} is 2×3.
- The size of a matrix is also known as the dimension.
- The element in the i th row and j th column of \mathbf{A} is referred to as $a_{i j}$.
- The matrix \mathbf{A} can also be written as $\mathbf{A}=\left(a_{i j}\right)$.

Matrix addition and subtraction

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] ; \quad \mathbf{B}=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right]
$$

Definition (Matrix Addition and Subtraction)

- Dimensions must match:

$$
(r \times c) \pm(r \times c) \Longrightarrow(r \times c)
$$

- \mathbf{A} and \mathbf{B} are both 2×3 matrices, so

$$
\mathbf{A}+\mathbf{B}=\left[\begin{array}{lll}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23}
\end{array}\right]
$$

- More generally we write:

$$
\mathbf{A} \pm \mathbf{B}=\left(a_{i j}\right) \pm\left(b_{i j}\right)
$$

Matrix multiplication

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] ; \quad \mathbf{D}=\left[\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22} \\
d_{31} & d_{32}
\end{array}\right]
$$

Definition (Matrix Multiplication)

- Inner dimensions need to match:

$$
(r \times c) \times(c \times p) \Longrightarrow(r \times p)
$$

- \mathbf{A} is a 2×3 and \mathbf{D} is a 3×2 matrix, so the inner dimensions match and we have: $\mathbf{C}=\mathbf{A} \times \mathbf{D}=$

$$
\left[\begin{array}{ll}
a_{11} d_{11}+a_{12} d_{21}+a_{13} d_{31} & a_{11} d_{12}+a_{12} d_{22}+a_{13} d_{32} \\
a_{21} d_{11}+a_{22} d_{21}+a_{23} d_{31} & a_{21} d_{12}+a_{22} d_{22}+a_{23} d_{32}
\end{array}\right]
$$

- Look at the pattern in the terms above.

Matrix multiplication

Determinant

Definition (General Formula)

- Let $\mathbf{C}=\left(c_{i j}\right)$ be an $n \times n$ square matrix.
- Define a cofactor matrix, $C_{i j}$, be the determinant of the square matrix of order $(n-1)$ obtained from \mathbf{C} by removing row i and column j multiplied by $(-1)^{i+j}$.
- For fixed i, i.e. focusing on one row: $\operatorname{det}(\mathbf{C})=\sum_{j=1}^{n} c_{i j} C_{i j}$.
- For fixed j, i.e. focusing on one column: $\operatorname{det}(\mathbf{C})=\sum_{j=1}^{n} c_{i j} C_{i j}$.
- Note that this is a recursive formula.
- The trick is to pick a row (or column) with a lot of zeros (or better yet, use a computer)!

2×2 determinant

Apply the general formula to a 2×2 matrix: $\mathbf{C}=\left[\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right]$.

- Keep the first row fixed, i.e. set $i=1$.
- General formula when $i=1$ and $n=2: \operatorname{det}(\mathbf{C})=\sum_{j=1}^{2} c_{1 j} C_{1 j}$
- When $j=1, C_{11}$ is one cofactor matrix of \mathbf{C}, i.e. the determinant after removing the first row and first column of C multiplied by $(-1)^{i+j}=(-1)^{2}$. So

$$
C_{11}=(-1)^{2} \operatorname{det}\left(c_{22}\right)=c_{22}
$$

as c_{22} is a scalar and the determinant of a scalar is itself.

- $C_{12}=(-1)^{3} \operatorname{det}\left(c_{21}\right)=-c_{21}$ as c_{21} is a scalar and the determinant of a scalar is itself.
- Put it all together and you get the familiar result:

$$
\operatorname{det}(\mathbf{C})=c_{11} C_{11}+c_{12} C_{12}=c_{11} c_{22}-c_{12} c_{21}
$$

3×3 determinant

$$
\mathbf{B}=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]
$$

- Keep the first row fixed, i.e. set $i=1$. General formula when $i=1$ and $n=3$:

$$
\operatorname{det}(\mathbf{B})=\sum_{j=1}^{3} b_{1 j} B_{1 j}=b_{11} B_{11}+b_{12} B_{12}+b_{13} B_{13}
$$

- For example, B_{12} is the determinant of the matrix you get after removing the first row and second column of \mathbf{B}
multiplied by $(-1)^{i+j}=(-1)^{1+2}=-1: \quad B_{12}=-\left|\begin{array}{ll}b_{21} & b_{23} \\ b_{31} & b_{33}\end{array}\right|$.
- $\operatorname{det}(\mathbf{B})=b_{11}\left|\begin{array}{ll}b_{22} & b_{23} \\ b_{32} & b_{33}\end{array}\right|-b_{12}\left|\begin{array}{ll}b_{21} & b_{23} \\ b_{31} & b_{33}\end{array}\right|+b_{13}\left|\begin{array}{ll}b_{21} & b_{22} \\ b_{31} & b_{32}\end{array}\right|$

Sarrus' scheme for the determinant of a 3×3

- French mathematician: Pierre Frédéric Sarrus (1798-1861)

$$
\begin{aligned}
\operatorname{det}(\mathbf{B})= & \left|\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right| \\
= & b_{11}\left|\begin{array}{ll}
b_{22} & b_{23} \\
b_{32} & b_{33}
\end{array}\right|-b_{12}\left|\begin{array}{ll}
b_{21} & b_{23} \\
b_{31} & b_{33}
\end{array}\right|+b_{13}\left|\begin{array}{ll}
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right| \\
= & \left(b_{11} b_{22} b_{33}+b_{12} b_{23} b_{31}+b_{13} b_{21} b_{32}\right) \\
& \quad-\left(b_{13} b_{22} b_{31}+b_{11} b_{23} b_{32}+b_{12} b_{21} b_{33}\right)
\end{aligned}
$$

Write the first two columns of the matrix again to the right of the original matrix. Multiply the diagonals together and then add or subtract.

Determinant as an area

$$
\mathbf{A}=\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right]
$$

- For a 2×2 matrix, $\operatorname{det}(\mathbf{A})$ is the oriented area ${ }^{1}$ of the parallelogram with vertices at $\mathbf{0}=(0,0), \mathbf{a}=\left(x_{1}, y_{1}\right)$, $\mathbf{a}+\mathbf{b}=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$, and $\mathbf{b}=\left(x_{2}, y_{2}\right)$.

- In a sense, the determinant "summarises" the information in the matrix.
${ }^{1}$ The oriented area is the same as the usual area, except that it is negative when the vertices are listed in clockwise order.

Identity matrix

Definition (Identity matrix)

- A square matrix, I, with ones on the main diagonal and zeros everywhere else:

$$
\mathbf{I}=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & & 0 & 0 \\
\vdots & \vdots & & \ddots & & \vdots \\
0 & 0 & 0 & & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

- Sometimes you see \mathbf{I}_{r} which indicates that it is an $r \times r$ identity matrix.
- If the size of \mathbf{I} is not specified, it is assumed to be "conformable", i.e. as big as necessary.

Identity matrix

- An identity matrix is the matrix analogue of the number 1 .
- If you multiply any matrix (or vector) with a conformable identity matrix the result will be the same matrix (or vector).

Example (2×2)

$$
\begin{aligned}
\mathbf{A I} & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
a_{11} \times 1+a_{12} \times 0 & a_{11} \times 0+a_{12} \times 1 \\
a_{21} \times 1+a_{22} \times 0 & a_{21} \times 0+a_{22} \times 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\mathbf{A} .
\end{aligned}
$$

Inverse

Definition (Inverse)

- Requires a square matrix i.e. dimensions: $r \times r$
- For a 2×2 matrix, $\mathbf{A}=\left[\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$,

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

- More generally, a square matrix A is invertible or nonsingular if there exists another matrix \mathbf{B} such that

$$
\mathbf{A B}=\mathbf{B A}=\mathbf{I}
$$

- If this occurs then \mathbf{B} is uniquely determined by \mathbf{A} and is denoted \mathbf{A}^{-1}, i.e. $\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$.

Vectors

Vectors are matrices with only one row or column. For example, the column vector:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Definition (Transpose Operator)

Turns columns into rows (and vice versa):

$$
\mathbf{x}^{\prime}=\mathbf{x}^{T}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]
$$

Example (Sum of Squares)

$$
\mathbf{x}^{\prime} \mathbf{x}=\sum_{i=1}^{n} x_{i}^{2}
$$

Transpose

Say we have some $m \times n$ matrix:

$$
\mathbf{A}=\left(a_{i j}\right)=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

Definition (Transpose Operator)

- Flips the rows and columns of a matrix:

$$
\mathbf{A}^{\prime}=\left(a_{j i}\right)
$$

- The subscripts gets swapped.
- \mathbf{A}^{\prime} is a $n \times m$ matrix: the columns in \mathbf{A} are the rows in \mathbf{A}^{\prime}.

Symmetry

Definition (Square Matrix)

A matrix, \mathbf{P} is square if it has the same number of rows as columns. I.e.

$$
\operatorname{dim}(\mathbf{P})=n \times n
$$

for some $n \geq 1$.

Definition (Symmetric Matrix)

A square matrix, \mathbf{P} is symmetric if it is equal to its transpose:

$$
\mathbf{P}=\mathbf{P}^{\prime}
$$

Idempotent

Definition (Idempotent)

A square matrix, \mathbf{P} is idempotent if when multiplied by itself, yields itself. I.e.

$$
\mathbf{P P}=\mathbf{P}
$$

1. When an idempotent matrix is subtracted from the identity matrix, the result is also idempotent, i.e. $\mathbf{M}=\mathbf{I}-\mathbf{P}$ is idempotent.
2. The trace of an idempotent matrix is equal to the rank.
3. $\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ is an idempotent matrix.

Order of operations

- Matrix multiplication is non-commutative, i.e. the order of multiplication is important: $\mathbf{A B} \neq \mathbf{B A}$.
- Matrix multiplication is associative, i.e. as long as the order stays the same, $(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$.
- $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
- $(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$

Example

Let \mathbf{A} be a $k \times k$ matrix and \mathbf{x} and \mathbf{c} be $k \times 1$ vectors:

$$
\begin{aligned}
\mathbf{A x} & =\mathbf{c} \\
\mathbf{A}^{-1} \mathbf{A} \mathbf{x} & =\mathbf{A}^{-1} \mathbf{c} \quad\left(\text { PRE-multiply both sides by } \mathbf{A}^{-1}\right) \\
\mathbf{I} \mathbf{x} & =\mathbf{A}^{-1} \mathbf{c} \\
\mathbf{x} & =\mathbf{A}^{-1} \mathbf{c}
\end{aligned}
$$

Note: $\mathbf{A}^{-1} \mathbf{c} \neq \mathbf{c A}^{-1}$

Matrix Differentiation

If $\boldsymbol{\beta}$ and \mathbf{a} are both $k \times 1$ vectors then, $\frac{\partial \boldsymbol{\beta}^{\prime} \mathbf{a}}{\partial \boldsymbol{\beta}}=\mathbf{a}$.

Proof.

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{\beta}}\left(\boldsymbol{\beta}^{\prime} \mathbf{a}\right) & =\frac{\partial}{\partial \boldsymbol{\beta}}\left(\beta_{1} a_{1}+\beta_{2} a_{2}+\ldots+\beta_{k} a_{k}\right) \\
& =\left[\begin{array}{c}
\frac{\partial}{\partial \beta_{1}}\left(\beta_{1} a_{1}+\beta_{2} a_{2}+\ldots+\beta_{k} a_{k}\right) \\
\frac{\partial}{\partial \beta_{2}}\left(\beta_{1} a_{1}+\beta_{2} a_{2}+\ldots+\beta_{k} a_{k}\right) \\
\vdots \\
\frac{\partial}{\partial \beta_{k}}\left(\beta_{1} a_{1}+\beta_{2} a_{2}+\ldots+\beta_{k} a_{k}\right)
\end{array}\right] \\
& =\mathbf{a}
\end{aligned}
$$

Matrix Differentiation

Let $\boldsymbol{\beta}$ be a $k \times 1$ vector and \mathbf{A} be a $k \times k$ symmetric matrix then

$$
\frac{\partial \boldsymbol{\beta}^{\prime} \mathbf{A} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}}=2 \mathbf{A} \boldsymbol{\beta}
$$

Proof.

By means of proof, say $\boldsymbol{\beta}=\binom{\beta_{1}}{\beta_{2}}$ and $\mathbf{A}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right)$, then

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{\beta}}\left(\boldsymbol{\beta}^{\prime} \mathbf{A} \boldsymbol{\beta}\right) & =\frac{\partial}{\partial \boldsymbol{\beta}}\left(\beta_{1}^{2} a_{11}+2 a_{12} \beta_{1} \beta_{2}+\beta_{2}^{2} a_{22}\right) \\
& =\left[\begin{array}{l}
\frac{\partial}{\partial \beta_{1}}\left(\beta_{1}^{2} a_{11}+2 a_{12} \beta_{1} \beta_{2}+\beta_{2}^{2} a_{22}\right) \\
\frac{\partial}{\partial \beta_{2}}\left(\beta_{1}^{2} a_{11}+2 a_{12} \beta_{1} \beta_{2}+\beta_{2}^{2} a_{22}\right)
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \beta_{1} a_{11}+2 a_{12} \beta_{2} \\
2 \beta_{1} a_{12}+2 a_{22} \beta_{2}
\end{array}\right] \\
& =2 \mathbf{A} \boldsymbol{\beta}
\end{aligned}
$$

Matrix Differentiation

Let $\boldsymbol{\beta}$ be a $k \times 1$ vector and \mathbf{A} be a $n \times k$ matrix then $\frac{\partial \mathbf{A} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}^{\prime}}=\mathbf{A}$.

Proof.

By means of proof, say $\boldsymbol{\beta}=\binom{\beta_{1}}{\beta_{2}}$ and $\mathbf{A}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$, then

$$
\left.\left.\left.\begin{array}{rl}
\frac{\partial}{\partial \boldsymbol{\beta}^{\prime}}(\mathbf{A} \boldsymbol{\beta}) & =\frac{\partial}{\partial \boldsymbol{\beta}^{\prime}}\left[\begin{array}{l}
a_{11} \beta_{1}+a_{12} \beta_{2} \\
a_{21} \beta_{1}+a_{22} \beta_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
{\left[\frac{\partial}{\partial \beta_{1}}\right.} & \frac{\partial}{\partial \beta_{2}}
\end{array}\right]\left(a_{11} \beta_{1}+a_{12} \beta_{2}\right) \\
{\left[\frac{\partial}{\partial \beta_{1}}\right.} & \frac{\partial}{\partial \beta_{2}}
\end{array}\right]\left(a_{21} \beta_{1}+a_{22} \beta_{2}\right)\right] .\right] .
$$

Rank

- The rank of a matrix \mathbf{A} is the maximal number of linearly independent rows or columns of \mathbf{A}.
- A family of vectors is linearly independent if none of them can be written as a linear combination of finitely many other vectors in the collection.

Example (Dummy variable trap)

$$
\begin{aligned}
& \text { independent }
\end{aligned}
$$

$\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} are independent but $\mathbf{v}_{4}=\mathbf{v}_{1}-\mathbf{v}_{2}-\mathbf{v}_{3}$.

Rank

- The maximum rank of an $m \times n$ matrix is $\min (m, n)$.
- A full rank matrix is one that has the largest possible rank, i.e. the rank is equal to either the number of rows or columns (whichever is smaller).
- In the case of an $n \times n$ square matrix \mathbf{A}, then \mathbf{A} is invertible if and only if \mathbf{A} has rank n (that is, \mathbf{A} has full rank).
- For some $n \times k$ matrix, $\mathbf{X}, \operatorname{rank}(\mathbf{X})=\operatorname{rank}\left(\mathbf{X}^{\prime} \mathbf{X}\right)$
- This is why the dummy variable trap exists, you need to drop one of the dummy categories otherwise \mathbf{X} is not of full rank and therefore you cannot find the inverse of $\mathbf{X}^{\prime} \mathbf{X}$.

Trace

Definition

The trace of an $n \times n$ matrix \mathbf{A} is the sum of the elements on the main diagonal: $\operatorname{tr}(\mathbf{A})=a_{11}+a_{22}+\ldots+a_{n n}=\sum_{i=1}^{n} a_{i i}$.

Properties

- $\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$
- $\operatorname{tr}(c \mathbf{A})=c \operatorname{tr}(\mathbf{A})$
- If \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is an $n \times m$ matrix then

$$
\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})
$$

- More generally, for conformable matrices:

$$
\operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{C A B})=\operatorname{tr}(\mathbf{B C A})
$$

BUT: $\operatorname{tr}(\mathbf{A B C}) \neq \operatorname{tr}(\mathbf{A C B})$. You can only move from the front to the back (or back to the front)!

Eigenvalues

- An eigenvalue λ and an eigenvector $\mathbf{x} \neq \mathbf{0}$ of a square matrix A is defined as

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

- Since the eigenvector x is different from the zero vector (i.e. $\mathbf{x} \neq \mathbf{0}$) the following is valid:

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0} \Longrightarrow \operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0
$$

- We know $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$ because:
- if $(\mathbf{A}-\lambda \mathbf{I})^{-1}$ existed, we could just pre multiply both sides by $(\mathbf{A}-\lambda \mathbf{I})^{-1}$ and get the solution $\mathbf{x}=\mathbf{0}$.
- but we have assumed $\mathbf{x} \neq \mathbf{0}$ so we require that $(\mathbf{A}-\lambda \mathbf{I})$ is NOT invertible which implies ${ }^{2}$ that $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$.
- To find the eigenvalues, we can solve $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$.

[^0]
Eigenvalues

Example (Finding eigenvalues)

Say $\mathbf{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. We can find the eigenvaules of \mathbf{A} by solving

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) & =0 \\
\operatorname{det}\left(\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =0 \\
\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right| & =0 \\
(2-\lambda)(2-\lambda)-1 \times 1 & =0 \\
\lambda^{2}-4 \lambda+3 & =0 \\
(\lambda-1)(\lambda-3) & =0
\end{aligned}
$$

The eigenvalues are the roots of this quadratic: $\lambda=1$ and $\lambda=3$.

Why do we care about eigenvalues?

- An $n \times n$ matrix \mathbf{A} is positive definite if all eigenvalues of \mathbf{A}, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are positive.
\star Definiteness
- A matrix is negative-definite, negative-semidefinite, or positive-semidefinite if and only if all of its eigenvalues are negative, non-positive, or non-negative, respectively.
- The eigenvectors corresponding to different eigenvalues are linearly independent. So if a $n \times n$ matrix has n nonzero eigenvalues, it is of full rank.
- The trace of a matrix is the sum of the eigenvectors:

$$
\operatorname{tr}(\mathbf{A})=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}
$$

- The determinant of a matrix is the product of the eigenvectors: $\operatorname{det}(\mathbf{A})=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$.
- The eigenvectors and eigenvalues of the covariance matrix of a data set data are also used in principal component analysis (similar to factor analysis).

Useful rules

- $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$
- $\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}^{\prime}\right)$
- $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$
- $\operatorname{det}\left(\mathbf{A}^{-1}\right)=\frac{1}{\operatorname{det}(\mathbf{A})}$
- $\mathbf{A I}=\mathbf{A}$ and $\mathbf{x I}=\mathbf{x}$
- If $\boldsymbol{\beta}$ and \mathbf{a} are both $k \times 1$ vectors, $\frac{\partial \boldsymbol{\beta}^{\prime} \mathbf{a}}{\partial \boldsymbol{\beta}}=\mathbf{a}$
- If \mathbf{A} is a $n \times k$ matrix, $\frac{\partial \mathbf{A} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}^{\prime}}=\mathbf{A}$
- If \mathbf{A} is a $k \times k$ symmetric matrix, $\frac{\partial \boldsymbol{\beta}^{\prime} \mathbf{A} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}}=2 \mathbf{A} \boldsymbol{\beta}$
- If \mathbf{A} is a $k \times k$ (not necessarily symmetric) matrix, $\frac{\partial \boldsymbol{\beta}^{\prime} \mathbf{A} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}}=\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \boldsymbol{\beta}$

Quadratic forms

- A quadratic form on \mathbb{R}^{n} is a real-valued function of the form

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \leq j} a_{i j} x_{i} x_{j} .
$$

- E.g. in \mathbb{R}^{2} we have $Q\left(x_{1}, x_{2}\right)=a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}$.
- Quadratic forms can be represented by a symmetric matrix A such that:

$$
Q(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}
$$

- E.g. if $\mathbf{x}=\left(x_{1}, x_{2}\right)^{\prime}$ then

$$
\begin{aligned}
Q(\mathbf{x}) & =\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \frac{1}{2} a_{12} \\
\frac{1}{2} a_{21} & a_{22}
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =a_{11} x_{1}^{2}+\frac{1}{2}\left(a_{12}+a_{21}\right) x_{1} x_{2}+a_{22} x_{2}^{2}
\end{aligned}
$$

but \mathbf{A} is symmetric, i.e. $a_{12}=a_{21}$, so we can write,

$$
=a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}
$$

Quadratic forms

If $\mathbf{x} \in \mathbb{R}^{3}$, i.e. $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\prime}$ then the general three dimensional quadratic form is:

$$
Q(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}
$$

$$
=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{ccc}
a_{11} & \frac{1}{2} a_{12} & \frac{1}{2} a_{13} \\
\frac{1}{2} a_{12} & a_{22} & \frac{1}{2} a_{23} \\
\frac{1}{2} a_{13} & \frac{1}{2} a_{23} & a_{33}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

$$
=a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{23} x_{2} x_{3} .
$$

Quadratic Forms and Sum of Squares

Recall sums of squares can be written as $\mathbf{x}^{\prime} \mathbf{x}$ and quadratic forms are $\mathbf{x}^{\prime} \mathbf{A x}$. Quadratic forms are like generalised and weighted sum of squares. Note that if $\mathbf{A}=\mathbf{I}$ then we recover the sums of squares exactly.

Definiteness of quadratic forms

- A quadratic form always takes on the value zero at the point $\mathbf{x}=\mathbf{0}$. This is not an interesting result!
- For example, if $\mathbf{x} \in \mathbb{R}$, i.e. $\mathbf{x}=x_{1}$ then the general quadratic form is $a x_{1}^{2}$ which equals zero when $x_{1}=0$.
- Its distinguishing characteristic is the set of values it takes when $\mathbf{x} \neq \mathbf{0}$.
- We want to know if $\mathbf{x}=\mathbf{0}$ is a max, min or neither.
- Example: when $\mathbf{x} \in \mathbb{R}$, i.e. the quadratic form is $a x_{1}^{2}$,
$a>0$ means $a x^{2} \geq 0$ and equals 0 only when $x=0$. Such a form is called positive definite; $x=0$ is a global minimiser.
$a<0$ means $a x^{2} \leq 0$ and equals 0 only when $x=0$. Such a form is called negative definite; $x=0$ is a global maximiser.

Positive definite

$$
\text { If } \mathbf{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { then } Q_{1}(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=x_{1}^{2}+x_{2}^{2} .
$$

- Q_{1} is greater than zero at $\mathbf{x} \neq \mathbf{0}$ i.e. $\left(x_{1}, x_{2}\right) \neq(0,0)$.
- The point $\mathbf{x}=\mathbf{0}$ is a global minimum.
- Q_{1} is called positive definite.

Figure 1: $Q_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$

Negative definite

$$
\text { If } \mathbf{A}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \text { then } Q_{2}(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=-x_{1}^{2}-x_{2}^{2}
$$

- Q_{2} is less than zero at $\mathbf{x} \neq \mathbf{0}$ i.e. $\left(x_{1}, x_{2}\right) \neq(0,0)$.
- The point $\mathbf{x}=\mathbf{0}$ is a global maximum.
- Q_{2} is called negative definite.

Figure 2: $Q_{2}\left(x_{1}, x_{2}\right)=-x_{1}^{2}-x_{2}^{2}$

Indefinite

If $\mathbf{A}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ then $Q_{3}(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=x_{1}^{2}-x_{2}^{2}$.

- Q_{3} can be take both positive and negative values.
- E.g. $Q_{3}(1,0)=+1$ and $Q_{3}(0,1)=-1$.
- Q_{3} is called indefinite.

Figure 3: $Q_{3}\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$

Positive semidefinite

If $\mathbf{A}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ then $Q_{4}(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$.

- Q_{4} is always ≥ 0 but does equal zero at some $\mathbf{x} \neq \mathbf{0}$.
- E.g. $Q_{4}(10,-10)=0$.
- Q_{4} is called positive semidefinite.

Figure 4: $Q_{4}\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$

Negative semidefinite

If $\mathbf{A}=\left(\begin{array}{cc}-1 & 1 \\ -1 & -1\end{array}\right)$ then $Q_{5}(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=-\left(x_{1}+x_{2}\right)^{2}$.

- Q_{4} is always ≤ 0 but does equal zero at some $\mathbf{x} \neq \mathbf{0}$
- E.g. $Q_{5}(10,-10)=0$
- Q_{5} is called negative semidefinite.

Figure 5: $Q_{5}\left(x_{1}, x_{2}\right)=-\left(x_{1}+x_{2}\right)^{2}$

Definite symmetric matrices

A symmetric matrix, \mathbf{A}, is called positive definite, positive semidefinite, negative definite, etc. according to the definiteness of the corresponding quadratic form $Q(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}$.

Definition

Let \mathbf{A} be a $n \times n$ symmetric matrix, then \mathbf{A} is

1. positive definite if $\mathbf{x}^{\prime} \mathbf{A x}>0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^{n}
2. positive semidefinite if $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^{n}
3. negative definite if $\mathbf{x}^{\prime} \mathbf{A x}<0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^{n}
4. negative semidefinite if $\mathbf{x}^{\prime} \mathbf{A x} \leq 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^{n}
5. indefinite if $\mathbf{x}^{\prime} \mathbf{A x}>0$ for some $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^{n} and <0 for some other x in \mathbb{R}^{n}

- We can check the definiteness of a matrix by show that one of these definitions holds as in the example
- You can find the eigenvalues to check definiteness

How else to check for definiteness?

You can check the sign of the sequence of determinants of the leading principal minors:

Positive Definite

An $n \times n$ matrix \mathbf{M} is positive definite if all the following matrices have a positive determinant:

- the top left 1×1 corner of \mathbf{M} (1st order principal minor)
- the top left 2×2 corner of \mathbf{M} (2 nd order principal minor) \vdots
- M itself.

In other words, all of the leading principal minors are positive.

Negative Definite

A matrix is negative definite if all k th order leading principal minors are negative when k is odd and positive when k is even.

Why do we care about definiteness?

Useful for establishing if a (multivariate) function has a maximum, minimum or neither at a critical point.

- If we have a function, $f(x)$, we can show that a minimum exists at a critical point, i.e. when $f^{\prime}(x)=0$, if $f^{\prime \prime}(x)>0$.

Example $\left(f(x)=2 x^{2}\right)$

- $f^{\prime}(x)=4 x$
- $f^{\prime}(x)=0 \Longrightarrow x=0$
- $f^{\prime \prime}(x)=4>0 \Longrightarrow$ minimum at $x=0$.

Why do we care about definiteness?

- In the special case of a univariate function $f^{\prime \prime}(x)$ is a 1×1 Hessian matrix and showing that $f^{\prime \prime}(x)>0$ is equivalent to showing that the Hessian is positive definite.
- If we have a bivariate function $f(x, y)$ we find critical points when the first order partial derivatives are equal to zero:

1. Find the first order derivatives and set them equal to zero
2. Solve simultaneously to find critical points

- We can check if max or min or neither using the Hessian matrix, \mathbf{H}, the matrix of second order partial derivatives:

$$
\mathbf{H}=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]
$$

1. (If necessary) evaluate the Hessian at a critical point
2. Check if \mathbf{H} is positive or negative definite:
\& Check definiteness

- $|\mathbf{H}|>0$ and $f_{x x}>0 \Longrightarrow$ positive definite \Longrightarrow minimum
- $|\mathbf{H}|>0$ and $f_{x x}<0 \Longrightarrow$ negative definite \Longrightarrow maximum

3. Repeat for all critical points

Why do we care about definiteness?

- If we find the second order conditions and show that it is a positive definite matrix then we have shown that we have a minimum.
- Positive definite matrices are non-singular, i.e. we can invert them. So if we can show $\mathbf{X}^{\prime} \mathbf{X}$ is positive definiteness, we can find $\left[\mathbf{X}^{\prime} \mathbf{X}\right]^{-1}$.
- Application: showing that the Ordinary Least Squares (OLS) minimises the sum of squared residuals.

Matrices as systems of equations

- A system of equations:

$$
\begin{aligned}
y_{1} & =x_{11} b_{1}+x_{12} b_{2}+\ldots+x_{1 k} b_{k} \\
y_{2} & =x_{21} b_{1}+x_{22} b_{2}+\ldots+x_{2 k} b_{k} \\
& \vdots \\
& \\
y_{n} & =x_{n 1} b_{1}+x_{n 2} b_{2}+\ldots+x_{n k} b_{k}
\end{aligned}
$$

- The matrix form:

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 k} \\
x_{21} & x_{22} & \ldots & x_{2 k} \\
\vdots & \vdots & & \vdots \\
x_{n 1} & x_{n 2} & \ldots & x_{n k}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{k}
\end{array}\right]
$$

Matrices as systems of equations

- More succinctly: $\mathbf{y}=\mathbf{X b}$ where

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] ; \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{k}
\end{array}\right] ; \quad \mathbf{x}_{i}=\left[\begin{array}{c}
x_{i 1} \\
x_{i 2} \\
\vdots \\
x_{i k}
\end{array}\right]
$$

for $i=1,2, \ldots, n$ and

$$
\mathbf{X}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 k} \\
x_{21} & x_{22} & \ldots & x_{2 k} \\
\vdots & \vdots & & \vdots \\
x_{n 1} & x_{n 2} & \ldots & x_{n k}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{1}^{\prime} \\
\mathbf{x}_{2}^{\prime} \\
\vdots \\
\mathbf{x}_{n}^{\prime}
\end{array}\right]
$$

- \mathbf{x}_{i} is the "covariate vector" for the i th observation.

Matrices as systems of equations

- We can write $\mathbf{y}=\mathbf{X b}$ as

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{1}^{\prime} \\
\mathbf{x}_{2}^{\prime} \\
\vdots \\
\mathbf{x}_{n}^{\prime}
\end{array}\right] \mathbf{b} .
$$

- Returning to the original system, we can write each individual equation using vectors:

$$
\begin{gathered}
y_{1}=\mathbf{x}_{1}^{\prime} \mathbf{b} \\
y_{2}=\mathbf{x}_{2}^{\prime} \mathbf{b} \\
\vdots \\
y_{n}=\mathbf{x}_{n}^{\prime} \mathbf{b}
\end{gathered}
$$

Mixing matrices, vectors and summation notation

Often we want to find $\mathbf{X}^{\prime} \mathbf{u}$ or $\mathbf{X}^{\prime} \mathbf{X}$. A convenient way to write this is as a sum of vectors. Say we have a 3×2 matrix \mathbf{X} :

$$
\mathbf{X}=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22} \\
x_{31} & x_{32}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{x}_{1}^{\prime} \\
\mathbf{x}_{2}^{\prime} \\
\mathbf{x}_{3}^{\prime}
\end{array}\right] ; \quad \mathbf{x}_{i}=\left[\begin{array}{l}
x_{i 1} \\
x_{i 2}
\end{array}\right] ; \quad \text { and } \quad \mathbf{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]
$$

We can write,

$$
\begin{aligned}
\mathbf{X}^{\prime} \mathbf{u} & =\left[\begin{array}{lll}
x_{11} & x_{21} & x_{31} \\
x_{12} & x_{22} & x_{32}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
x_{11} u_{1}+x_{21} u_{2}+x_{31} u_{3} \\
x_{12} u_{1}+x_{22} u_{2}+x_{32} u_{3}
\end{array}\right] \\
& =\mathbf{x}_{1} u_{1}+\mathbf{x}_{2} u_{2}+\mathbf{x}_{3} u_{3} \\
& =\sum_{i=1}^{3} \mathbf{x}_{i} u_{i}
\end{aligned}
$$

Mixing matrices, vectors and summation notation

In a similar fashion, you can also show that $\mathbf{X}^{\prime} \mathbf{X}=\sum_{i=1}^{3} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}$.

$$
\begin{aligned}
\mathbf{X}^{\prime} \mathbf{X} & =\left[\begin{array}{lll}
x_{11} & x_{21} & x_{31} \\
x_{12} & x_{22} & x_{32}
\end{array}\right]\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22} \\
x_{31} & x_{32}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1}^{\prime} \\
\mathbf{x}_{2}^{\prime} \\
\mathbf{x}_{3}^{\prime}
\end{array}\right] \\
& =\mathbf{x}_{1} \mathbf{x}_{1}^{\prime}+\mathbf{x}_{2} \mathbf{x}_{2}^{\prime}+\mathbf{x}_{3} \mathbf{x}_{3}^{\prime} \\
& =\sum_{i=1}^{3} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}
\end{aligned}
$$

Application: variance-covariance matrix

- For the univariate case, $\operatorname{var}(Y)=\mathbb{E}\left([Y-\mu]^{2}\right)$.
- In the multivariate case \mathbf{Y} is a vector of n random variables.
- Without loss of generality, assume \mathbf{Y} has mean zero, i.e. $\mathbb{E}(\mathbf{Y})=\boldsymbol{\mu}=\mathbf{0}$. Then,

$$
\begin{aligned}
\operatorname{cov}(\mathbf{Y}, \mathbf{Y})=\operatorname{var}(\mathbf{Y}) & =\mathbb{E}\left([\mathbf{Y}-\boldsymbol{\mu}][\mathbf{Y}-\boldsymbol{\mu}]^{\prime}\right) \\
& =\mathbb{E}\left(\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]\left[\begin{array}{llll}
Y_{1} & Y_{2} & \cdots & Y_{n}
\end{array}\right]\right) \\
& =\mathbb{E}\left[\begin{array}{cccc}
Y_{1}^{2} & Y_{1} Y_{2} & \cdots & Y_{1} Y_{n} \\
Y_{2} Y_{1} & Y_{2}^{2} & \cdots & Y_{2} Y_{n} \\
\vdots & \vdots & & \vdots \\
Y_{n} Y_{1} & Y_{n} Y_{2} & \cdots & Y_{n}^{2}
\end{array}\right]
\end{aligned}
$$

Application: variance-covariance matrix

- Hence, we have a variance-covariance matrix:

$$
\operatorname{var}(\mathbf{Y})=\left[\begin{array}{cccc}
\operatorname{var}\left(Y_{1}\right) & \operatorname{cov}\left(Y_{1}, Y_{2}\right) & \cdots & \operatorname{cov}\left(Y_{1}, Y_{n}\right) \\
\operatorname{cov}\left(Y_{2}, Y_{1}\right) & \operatorname{var}\left(Y_{2}\right) & \cdots & \operatorname{cov}\left(Y_{2}, Y_{n}\right) \\
\vdots & \vdots & & \vdots \\
\operatorname{cov}\left(Y_{n}, Y_{1}\right) & \operatorname{cov}\left(Y_{n}, Y_{2}\right) & \cdots & \operatorname{var}\left(Y_{n}\right)
\end{array}\right]
$$

- What if we weight the random variables with a vector of constants, a?

$$
\begin{aligned}
\operatorname{var}\left(\mathbf{a}^{\prime} \mathbf{Y}\right) & =\mathbb{E}\left(\left[\mathbf{a}^{\prime} \mathbf{Y}-\mathbf{a}^{\prime} \boldsymbol{\mu}\right]\left[\mathbf{a}^{\prime} \mathbf{Y}-\mathbf{a}^{\prime} \boldsymbol{\mu}\right]^{\prime}\right) \\
& =\mathbb{E}\left(\mathbf{a}^{\prime}[\mathbf{Y}-\boldsymbol{\mu}]\left(\mathbf{a}^{\prime}[\mathbf{Y}-\boldsymbol{\mu}]\right)^{\prime}\right) \\
& =\mathbb{E}\left(\mathbf{a}^{\prime}[\mathbf{Y}-\boldsymbol{\mu}][\mathbf{Y}-\boldsymbol{\mu}]^{\prime} \mathbf{a}\right) \\
& =\mathbf{a}^{\prime} \mathbb{E}\left([\mathbf{Y}-\boldsymbol{\mu}][\mathbf{Y}-\boldsymbol{\mu}]^{\prime}\right) \mathbf{a} \\
& =\mathbf{a}^{\prime} \operatorname{var}(\mathbf{Y}) \mathbf{a}
\end{aligned}
$$

Application: variance of sums of random variables

Let $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ be a vector of random variables and $\mathbf{a}=\left(a_{1}, a_{2}\right)^{\prime}$ be some constants,

$$
\mathbf{a}^{\prime} \mathbf{Y}=\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right]\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=a_{1} Y_{1}+a_{2} Y_{2}
$$

Now, $\operatorname{var}\left(a_{1} Y_{1}+a_{2} Y_{2}\right)=\operatorname{var}\left(\mathbf{a}^{\prime} \mathbf{Y}\right)=\mathbf{a}^{\prime} \operatorname{var}(\mathbf{Y}) \mathbf{a}$ where

$$
\operatorname{var}(\mathbf{Y})=\left[\begin{array}{cc}
\operatorname{var}\left(Y_{1}\right) & \operatorname{cov}\left(Y_{1}, Y_{2}\right) \\
\operatorname{cov}\left(Y_{1}, Y_{2}\right) & \operatorname{var}\left(Y_{2}\right)
\end{array}\right]
$$

is the (symmetric) variance-covariance matrix.

$$
\begin{aligned}
\operatorname{var}\left(\mathbf{a}^{\prime} \mathbf{Y}\right) & =\mathbf{a}^{\prime} \operatorname{var}(\mathbf{Y}) \mathbf{a} \\
& =\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{var}\left(Y_{1}\right) & \operatorname{cov}\left(Y_{1}, Y_{2}\right) \\
\operatorname{cov}\left(Y_{1}, Y_{2}\right) & \operatorname{var}\left(Y_{2}\right)
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \\
& =a_{1}^{2} \operatorname{var}\left(Y_{1}\right)+a_{2}^{2} \operatorname{var}\left(Y_{2}\right)+2 a_{1} a_{2} \operatorname{cov}\left(Y_{1}, Y_{2}\right)
\end{aligned}
$$

Application: Given a linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$ derive the OLS estimator $\hat{\boldsymbol{\beta}}$. Show that $\hat{\boldsymbol{\beta}}$ achieves a minimum.

- The OLS estimator $\boldsymbol{\beta}$ minimises the sum of squared residuals, $\mathbf{u}^{\prime} \mathbf{u}=\sum_{i=1}^{n} u_{i}^{2}$ where $\mathbf{u}=\mathbf{y}-\mathbf{X} \boldsymbol{\beta}$ or $u_{i}=y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$.

$$
\begin{aligned}
S(\boldsymbol{\beta})=\sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)^{2} & =(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \\
& =\mathbf{y}^{\prime} \mathbf{y}-2 \mathbf{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}
\end{aligned}
$$

- Take the first derivative of $S(\boldsymbol{\beta})$ and set it equal to zero:

$$
\frac{\partial S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=-2 \mathbf{X}^{\prime} \mathbf{y}+2 \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=0 \Longrightarrow \mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{y}
$$

- Assuming \mathbf{X} (and therefore $\mathbf{X}^{\prime} \mathbf{X}$) is of full rank (so is $\mathbf{X}^{\prime} \mathbf{X}$ invertible) we get,

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

Application: Given a linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$ derive the OLS estimator $\hat{\boldsymbol{\beta}}$. Show that $\hat{\boldsymbol{\beta}}$ achieves a minimum.

- For a minimum we need to use the second order conditions:

$$
\frac{\partial^{2} S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}}=2 \mathbf{X}^{\prime} \mathbf{X}
$$

- The solution will be a minimum if $\mathbf{X}^{\prime} \mathbf{X}$ is a positive definite matrix. Let $q=\mathbf{c}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \mathbf{c}$ for some $\mathbf{c} \neq \mathbf{0}$. Then

$$
q=\mathbf{v}^{\prime} \mathbf{v}=\sum_{i=1}^{n} v_{i}^{2}, \quad \text { where } \mathbf{v}=\mathbf{X} \mathbf{c}
$$

- Unless $\mathbf{v}=\mathbf{0}, q$ is positive. But, if $\mathbf{v}=\mathbf{0}$ then \mathbf{v} or \mathbf{c} would be a linear combination of the columns of \mathbf{X} that equals $\mathbf{0}$ which contradicts the assumption that \mathbf{X} has full rank.
- Since \mathbf{c} is arbitrary, q is positive for every $\mathbf{c} \neq \mathbf{0}$ which establishes that $\mathbf{X}^{\prime} \mathbf{X}$ is positive definite.
- Therefore, if \mathbf{X} has full rank, then the least squares solution $\hat{\boldsymbol{\beta}}$ is unique and minimises the sum of squared residuals.

Matrix Operations

Operation
 R

Matlab

$\mathbf{A}=\left[\begin{array}{cc}5 & 7 \\ 10 & 2\end{array}\right] \quad \begin{array}{r}\text { A=matrix }(c(5,7,10,2), \\ \text { ncol }=2, \text { byrow }=T)\end{array} \quad A=[5,7 ; 10,2]$
$\operatorname{det}(\mathbf{A})$
$\operatorname{det}(\mathrm{A})$
$\operatorname{det}(\mathrm{A})$
\mathbf{A}^{-1}
solve(A)
$\operatorname{inv}(\mathrm{A})$
$\mathbf{A}+\mathbf{B}$
$A+B$
$A+B$

AB
A \% \% \% B
A * B
\mathbf{A}^{\prime}
t(A)
A ${ }^{\prime}$

Matrix Operations

Operation

R

Matlab

eigenvalues \& eigenvectors
eigen(A)

$$
[\mathrm{V}, \mathrm{E}]=\operatorname{eig}(\mathrm{A})
$$

covariance matrix of \mathbf{X}

$$
\operatorname{var}(\mathrm{X}) \text { or } \operatorname{cov}(\mathrm{X})
$$ $\operatorname{cov}(X)$

estimate of $\operatorname{rank}(\mathbf{A})$
qr (A)\$rank
rank(A)
$r \times r$ identity matrix, \mathbf{I}_{r}
eye(r)

Matlab Code

Figure 1
$[\mathrm{x}, \mathrm{y}]=\operatorname{meshgrid}(-10: 0.75: 10,-10: 0.75: 10)$; $\operatorname{surfc}\left(x, y, x .^{\wedge} 2+y . \wedge 2\right)$
ylabel('x_2')
xlabel('x_1')
zlabel('Q_1(x_1,x_2)')

Figure 2
$[\mathrm{x}, \mathrm{y}]=\operatorname{meshgrid}(-10: 0.75: 10,-10: 0.75: 10)$;
$\operatorname{surfc}(x, y,-x . \wedge 2-y . \wedge 2)$
ylabel('x_2')
xlabel('x_1')
zlabel('Q_2(x_1,x_2)')

Matlab Code

Figure 3
$[\mathrm{x}, \mathrm{y}]=\operatorname{meshgrid}(-10: 0.75: 10,-10: 0.75: 10)$; $\operatorname{surfc}(x, y, x . \wedge 2-y . \wedge 2)$
ylabel('x_2')
xlabel('x_1')
zlabel('Q_3(x_1, x_2)')

Figure 4
$[\mathrm{x}, \mathrm{y}]=\operatorname{meshgrid}(-10: 0.75: 10,-10: 0.75: 10)$;
$\operatorname{surfc}\left(\mathrm{x}, \mathrm{y}, \mathrm{x} .{ }^{\wedge} 2+2 . * \mathrm{x} . * \mathrm{y}+\mathrm{y} .{ }^{\wedge} 2\right)$
ylabel('x_2')
xlabel('x_1')
zlabel('Q_4(x_1,x_2)')

Matlab Code

Figure 5
$[\mathrm{x}, \mathrm{y}]=\operatorname{meshgrid}(-10: 0.75: 10,-10: 0.75: 10)$; $\operatorname{surfc}(x, y,-(x+y) . \wedge 2)$
ylabel('x_2')
xlabel('x_1')
zlabel('Q_5(x_1, $\left.x_{-} 2\right)$ ')

[^0]: ${ }^{2} \mathrm{~A}$ matrix is invertible if and only if the determinant is non-zero

