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Matrix fundamentals

A =

[
a11 a12 a13
a21 a22 a23

]

• A matrix is a rectangular array of numbers.

• Size: (rows)×(columns). E.g. the size of A is 2× 3.

• The size of a matrix is also known as the dimension.

• The element in the ith row and jth column of A is referred to
as aij .

• The matrix A can also be written as A = (aij).
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Matrix addition and subtraction

A =

[
a11 a12 a13
a21 a22 a23

]
; B =

[
b11 b12 b13
b21 b22 b23

]
Definition (Matrix Addition and Subtraction)

• Dimensions must match:

( r × c )± ( r × c ) =⇒ ( r × c )

• A and B are both 2× 3 matrices, so

A+B =

[
a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23

]
• More generally we write:

A±B = (aij)± (bij).
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Matrix multiplication

A =

[
a11 a12 a13
a21 a22 a23

]
; D =

d11 d12
d21 d22
d31 d32


Definition (Matrix Multiplication)

• Inner dimensions need to match:

( r × c )× ( c × p ) =⇒ ( r × p )

• A is a 2× 3 and D is a 3× 2 matrix, so the inner dimensions
match and we have: C = A×D =[

a11d11 + a12d21 + a13d31 a11d12 + a12d22 + a13d32
a21d11 + a22d21 + a23d31 a21d12 + a22d22 + a23d32

]
• Look at the pattern in the terms above.
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Matrix multiplication

a11 a12 a13

a21 a22 a23




A : 2× 3

d11 d12

d21 d22

d31 d32




D : 3× 2

c11 c12

c21 c22




a 1
1
×
d 1

1

a 1
2
×
d 2

1

a 1
3
×
d 3

1

+

+

C = AD : 2× 2
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Determinant

Definition (General Formula)

• Let C = (cij) be an n× n square matrix.

• Define a cofactor matrix, Cij , be the determinant of the
square matrix of order (n− 1) obtained from C by removing
row i and column j multiplied by (−1)i+j .

• For fixed i, i.e. focusing on one row: det(C) =

n∑
j=1

cijCij .

• For fixed j, i.e. focusing on one column: det(C) =

n∑
j=1

cijCij .

• Note that this is a recursive formula. More

• The trick is to pick a row (or column) with a lot of zeros (or
better yet, use a computer)!

http://www.google.com.au/search?q=recursive+formula+for+determinant
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2× 2 determinant

Apply the general formula to a 2× 2 matrix: C =

[
c11 c12
c21 c22

]
.

• Keep the first row fixed, i.e. set i = 1.

• General formula when i = 1 and n = 2: det(C) =

2∑
j=1

c1jC1j

• When j = 1, C11 is one cofactor matrix of C, i.e. the
determinant after removing the first row and first column of
C multiplied by (−1)i+j = (−1)2. So

C11 = (−1)2 det(c22) = c22

as c22 is a scalar and the determinant of a scalar is itself.
• C12 = (−1)3 det(c21) = −c21 as c21 is a scalar and the

determinant of a scalar is itself.
• Put it all together and you get the familiar result:

det(C) = c11C11 + c12C12 = c11c22 − c12c21
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3× 3 determinant

B =

b11 b12 b13
b21 b22 b23
b31 b32 b33


• Keep the first row fixed, i.e. set i = 1. General formula when
i = 1 and n = 3:

det(B) =

3∑
j=1

b1jB1j = b11B11 + b12B12 + b13B13

• For example, B12 is the determinant of the matrix you get
after removing the first row and second column of B

multiplied by (−1)i+j = (−1)1+2 = −1: B12 = −
∣∣∣∣b21 b23
b31 b33

∣∣∣∣.
• det(B) = b11

∣∣∣∣b22 b23
b32 b33

∣∣∣∣− b12 ∣∣∣∣b21 b23
b31 b33

∣∣∣∣+ b13

∣∣∣∣b21 b22
b31 b32

∣∣∣∣
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Sarrus’ scheme for the determinant of a 3× 3

• French mathematician: Pierre Frédéric Sarrus (1798-1861)

det(B) =

∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣
= b11

∣∣∣∣b22 b23
b32 b33

∣∣∣∣− b12 ∣∣∣∣b21 b23
b31 b33

∣∣∣∣+ b13

∣∣∣∣b21 b22
b31 b32

∣∣∣∣
=
(
b11b22b33 + b12b23b31 + b13b21b32

)
−
(
b13b22b31 + b11b23b32 + b12b21b33

)
b11 b12 b13 b11 b12

b21 b22 b23 b21 b22

b31 b32 b33 b31 b32

+ + +− − −

Write the first two
columns of the matrix
again to the right of the
original matrix. Multiply
the diagonals together and
then add or subtract.
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Determinant as an area

A =

[
x1 y1
x2 y2

]
=

[
a
b

]

• For a 2× 2 matrix, det(A) is the oriented area1 of the
parallelogram with vertices at 0 = (0, 0), a = (x1, y1),
a+ b = (x1 + x2, y1 + y2), and b = (x2, y2).

x

y

a

a+ bb

x1x2

y1

y2

• In a sense, the determinant “summarises” the information in
the matrix.

1The oriented area is the same as the usual area, except that it is negative
when the vertices are listed in clockwise order.



Fundamentals Quadratic Forms Systems Sums Applications Code

Identity matrix

Definition (Identity matrix)

• A square matrix, I, with ones on the main diagonal and zeros
everywhere else:

I =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 0 0
...

...
. . .

...
0 0 0 1 0
0 0 0 · · · 0 1


• Sometimes you see Ir which indicates that it is an r × r

identity matrix.

• If the size of I is not specified, it is assumed to be
“conformable”, i.e. as big as necessary.



Fundamentals Quadratic Forms Systems Sums Applications Code

Identity matrix

• An identity matrix is the matrix analogue of the number 1.

• If you multiply any matrix (or vector) with a conformable
identity matrix the result will be the same matrix (or vector).

Example (2× 2)

AI =

[
a11 a12
a21 a22

] [
1 0
0 1

]
=

[
a11 × 1 + a12 × 0 a11 × 0 + a12 × 1
a21 × 1 + a22 × 0 a21 × 0 + a22 × 1

]
=

[
a11 a12
a21 a22

]
= A.
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Inverse

Definition (Inverse)

• Requires a square matrix i.e. dimensions: r × r

• For a 2× 2 matrix, A =

[
a11 a12
a21 a22

]
,

A−1 =
1

det(A)

[
a22 −a12
−a21 a11

]
• More generally, a square matrix A is invertible or nonsingular

if there exists another matrix B such that

AB = BA = I.

• If this occurs then B is uniquely determined by A and is
denoted A−1, i.e. AA−1 = I.
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Vectors

Vectors are matrices with only one row or column. For example,
the column vector:

x =


x1
x2
...
xn


Definition (Transpose Operator)

Turns columns into rows (and vice versa):

x′ = xT =
[
x1 x2 · · · xn

]
Example (Sum of Squares)

x′x =

n∑
i=1

x2i
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Transpose

Say we have some m× n matrix:

A = (aij) =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


Definition (Transpose Operator)

• Flips the rows and columns of a matrix:

A′ = (aji)

• The subscripts gets swapped.

• A′ is a n×m matrix: the columns in A are the rows in A′.
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Symmetry

Definition (Square Matrix)

A matrix, P is square if it has the same number of rows as
columns. I.e.

dim(P) = n× n

for some n ≥ 1.

Definition (Symmetric Matrix)

A square matrix, P is symmetric if it is equal to its transpose:

P = P′
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Idempotent

Definition (Idempotent)

A square matrix, P is idempotent if when multiplied by itself,
yields itself. I.e.

PP = P.

1. When an idempotent matrix is subtracted from the identity
matrix, the result is also idempotent, i.e. M = I−P is
idempotent.

2. The trace of an idempotent matrix is equal to the rank.

3. X(X′X)−1X′ is an idempotent matrix.
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Order of operations

• Matrix multiplication is non-commutative, i.e. the order of
multiplication is important: AB 6= BA. Commutativity

• Matrix multiplication is associative, i.e. as long as the order
stays the same, (AB)C = A(BC). Associativity

• A(B+C) = AB+AC

• (A+B)C = AC+BC

Example

Let A be a k × k matrix and x and c be k × 1 vectors:

Ax = c

A−1Ax = A−1c (PRE-multiply both sides by A−1)

Ix = A−1c

x = A−1c

Note: A−1c 6= cA−1

http://en.wikipedia.org/wiki/Commutativity
http://en.wikipedia.org/wiki/Associativity
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Matrix Differentiation

If β and a are both k × 1 vectors then,
∂β′a

∂β
= a.

Proof.

∂

∂β

(
β′a
)
=

∂

∂β
(β1a1 + β2a2 + . . .+ βkak)

=


∂
∂β1

(β1a1 + β2a2 + . . .+ βkak)
∂
∂β2

(β1a1 + β2a2 + . . .+ βkak)
...

∂
∂βk

(β1a1 + β2a2 + . . .+ βkak)


= a

Matrix Calculus

http://en.wikipedia.org/wiki/Matrix_calculus
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Matrix Differentiation

Let β be a k × 1 vector and A be a k × k symmetric matrix then

∂β′Aβ

∂β
= 2Aβ.

Proof.

By means of proof, say β =

(
β1
β2

)
and A =

(
a11 a12
a12 a22

)
, then

∂

∂β

(
β′Aβ

)
=

∂

∂β

(
β21a11 + 2a12β1β2 + β22a22

)
=

[
∂
∂β1

(
β21a11 + 2a12β1β2 + β22a22

)
∂
∂β2

(
β21a11 + 2a12β1β2 + β22a22

)]

=

[
2β1a11 + 2a12β2
2β1a12 + 2a22β2

]
= 2Aβ
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Matrix Differentiation

Let β be a k × 1 vector and A be a n× k matrix then
∂Aβ

∂β′
= A.

Proof.

By means of proof, say β =

(
β1
β2

)
and A =

(
a11 a12
a21 a22

)
, then

∂

∂β′
(Aβ) =

∂

∂β′

[
a11β1 + a12β2
a21β1 + a22β2

]

=


[
∂
∂β1

∂
∂β2

]
(a11β1 + a12β2)[

∂
∂β1

∂
∂β2

]
(a21β1 + a22β2)


=

[
∂
∂β1

(a11β1 + a12β2)
∂
∂β2

(a11β1 + a12β2)

∂
∂β1

(a21β1 + a22β2)
∂
∂β2

(a21β1 + a22β2)

]
= A.
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Rank

• The rank of a matrix A is the maximal number of linearly
independent rows or columns of A.

• A family of vectors is linearly independent if none of them can
be written as a linear combination of finitely many other
vectors in the collection.

Example (Dummy variable trap)

v1 v2 v3 v4

[ ]
=

1 1 0 0

1 1 0 0

1 0 1 0

1 0 0 1





independent

dependent

v1, v2 and v3 are independent but v4 = v1 − v2 − v3.
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Rank

• The maximum rank of an m× n matrix is min(m,n).

• A full rank matrix is one that has the largest possible rank,
i.e. the rank is equal to either the number of rows or columns
(whichever is smaller).

• In the case of an n× n square matrix A, then A is invertible
if and only if A has rank n (that is, A has full rank).

• For some n× k matrix, X, rank(X) = rank(X′X)

• This is why the dummy variable trap exists, you need to drop
one of the dummy categories otherwise X is not of full rank
and therefore you cannot find the inverse of X′X.
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Trace

Definition

The trace of an n× n matrix A is the sum of the elements on the
main diagonal: tr(A) = a11 + a22 + . . .+ ann =

∑n
i=1 aii.

Properties

• tr(A+B) = tr(A) + tr(B)

• tr(cA) = ctr(A)

• If A is an m× n matrix and B is an n×m matrix then

tr(AB) = tr(BA)

• More generally, for conformable matrices:

tr(ABC) = tr(CAB) = tr(BCA)

BUT: tr(ABC) 6= tr(ACB). You can only move from the
front to the back (or back to the front)!
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Eigenvalues

• An eigenvalue λ and an eigenvector x 6= 0 of a square matrix
A is defined as

Ax = λx.

• Since the eigenvector x is different from the zero vector (i.e.
x 6= 0) the following is valid:

(A− λI)x = 0 =⇒ det(A− λI) = 0.

• We know det(A− λI) = 0 because:
• if (A− λI)−1 existed, we could just pre multiply both sides by

(A− λI)−1 and get the solution x = 0.
• but we have assumed x 6= 0 so we require that (A− λI) is

NOT invertible which implies2 that det(A− λI) = 0.

• To find the eigenvalues, we can solve det(A− λI) = 0.

2A matrix is invertible if and only if the determinant is non-zero
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Eigenvalues

Example (Finding eigenvalues)

Say A =

[
2 1
1 2

]
. We can find the eigenvaules of A by solving

det(A− λI) = 0

det

([
2 1
1 2

]
− λ

[
1 0
0 1

])
= 0∣∣∣∣2− λ 1

1 2− λ

∣∣∣∣ = 0

(2− λ)(2− λ)− 1× 1 = 0

λ2 − 4λ+ 3 = 0

(λ− 1)(λ− 3) = 0

The eigenvalues are the roots of this quadratic: λ = 1 and λ = 3.
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Why do we care about eigenvalues?

• An n× n matrix A is positive definite if all eigenvalues of A,
λ1, λ2, . . . , λn are positive. Definiteness

• A matrix is negative-definite, negative-semidefinite, or
positive-semidefinite if and only if all of its eigenvalues are
negative, non-positive, or non-negative, respectively.

• The eigenvectors corresponding to different eigenvalues are
linearly independent. So if a n× n matrix has n nonzero
eigenvalues, it is of full rank. Rank

• The trace of a matrix is the sum of the eigenvectors:
tr(A) = λ1 + λ2 + . . .+ λn. Trace

• The determinant of a matrix is the product of the
eigenvectors: det(A) = λ1λ2 · · ·λn. Determinant

• The eigenvectors and eigenvalues of the covariance matrix of
a data set data are also used in principal component analysis
(similar to factor analysis). Factor Analysis

http://en.wikipedia.org/wiki/Factor_analysis
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Useful rules

• (AB)′ = B′A′

• det(A) = det(A′)

• det(AB) = det(A) det(B)

• det(A−1) =
1

det(A)

• AI = A and xI = x

• If β and a are both k × 1 vectors,
∂β′a

∂β
= a

• If A is a n× k matrix,
∂Aβ

∂β′
= A

• If A is a k × k symmetric matrix,
∂β′Aβ

∂β
= 2Aβ

• If A is a k × k (not necessarily symmetric) matrix,
∂β′Aβ

∂β
= (A+A′)β



Fundamentals Quadratic Forms Systems Sums Applications Code

Quadratic forms

• A quadratic form on Rn is a real-valued function of the form

Q(x1, . . . , xn) =
∑
i≤j

aijxixj .

• E.g. in R2 we have Q(x1, x2) = a11x
2
1 + a12x1x2 + a22x

2
2.

• Quadratic forms can be represented by a symmetric matrix A
such that:

Q(x) = x′Ax

• E.g. if x = (x1, x2)
′ then

Q(x) =
(
x1 x2

)( a11
1
2a12

1
2a21 a22

)(
x1
x2

)
= a11x

2
1 +

1

2
(a12 + a21)x1x2 + a22x

2
2

but A is symmetric, i.e. a12 = a21, so we can write,

= a11x
2
1 + a12x1x2 + a22x

2
2.
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Quadratic forms

If x ∈ R3, i.e. x = (x1, x2, x3)
′ then the general three dimensional

quadratic form is:

Q(x) = x′Ax

=
(
x1 x2 x3

) a11
1
2a12

1
2a13

1
2a12 a22

1
2a23

1
2a13

1
2a23 a33

 x1
x2
x3


= a11x

2
1 + a22x

2
2 + a33x

2
3 + a12x1x2 + a13x1x3 + a23x2x3.

Quadratic Forms and Sum of Squares

Recall sums of squares can be written as x′x and quadratic forms
are x′Ax. Quadratic forms are like generalised and weighted sum
of squares. Note that if A = I then we recover the sums of
squares exactly.
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Definiteness of quadratic forms

• A quadratic form always takes on the value zero at the point
x = 0. This is not an interesting result!

• For example, if x ∈ R, i.e. x = x1 then the general quadratic
form is ax21 which equals zero when x1 = 0.

• Its distinguishing characteristic is the set of values it takes
when x 6= 0.

• We want to know if x = 0 is a max, min or neither.

• Example: when x ∈ R, i.e. the quadratic form is ax21,

a > 0 means ax2 ≥ 0 and equals 0 only when x = 0. Such
a form is called positive definite; x = 0 is a global
minimiser.

a < 0 means ax2 ≤ 0 and equals 0 only when x = 0. Such
a form is called negative definite; x = 0 is a global
maximiser.
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Positive definite

If A =

(
1 0
0 1

)
then Q1(x) = x′Ax = x21 + x22.

• Q1 is greater than zero at x 6= 0 i.e. (x1, x2) 6= (0, 0).
• The point x = 0 is a global minimum.
• Q1 is called positive definite.
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Figure 1: Q1(x1, x2) = x21 + x22 Code
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Negative definite

If A =

(
−1 0
0 −1

)
then Q2(x) = x′Ax = −x21 − x22.

• Q2 is less than zero at x 6= 0 i.e. (x1, x2) 6= (0, 0).
• The point x = 0 is a global maximum.
• Q2 is called negative definite.
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Figure 2: Q2(x1, x2) = −x21 − x22 Code
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Indefinite

If A =

(
1 0
0 −1

)
then Q3(x) = x′Ax = x21 − x22.

• Q3 can be take both positive and negative values.
• E.g. Q3(1, 0) = +1 and Q3(0, 1) = −1.
• Q3 is called indefinite.
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Figure 3: Q3(x1, x2) = x21 − x22 Code
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Positive semidefinite

If A =

(
1 1
1 1

)
then Q4(x) = x′Ax = x21 + 2x1x2 + x22.

• Q4 is always ≥ 0 but does equal zero at some x 6= 0.
• E.g. Q4(10,−10) = 0.
• Q4 is called positive semidefinite.
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Figure 4: Q4(x1, x2) = x21 + 2x1x2 + x22 Code



Fundamentals Quadratic Forms Systems Sums Applications Code

Negative semidefinite

If A =

(
−1 1
−1 −1

)
then Q5(x) = x′Ax = −(x1 + x2)

2.

• Q4 is always ≤ 0 but does equal zero at some x 6= 0
• E.g. Q5(10,−10) = 0
• Q5 is called negative semidefinite.
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Code
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Definite symmetric matrices

A symmetric matrix, A, is called positive definite, positive
semidefinite, negative definite, etc. according to the definiteness of
the corresponding quadratic form Q(x) = x′Ax.

Definition

Let A be a n× n symmetric matrix, then A is

1. positive definite if x′Ax > 0 for all x 6= 0 in Rn

2. positive semidefinite if x′Ax ≥ 0 for all x 6= 0 in Rn

3. negative definite if x′Ax < 0 for all x 6= 0 in Rn

4. negative semidefinite if x′Ax ≤ 0 for all x 6= 0 in Rn

5. indefinite if x′Ax > 0 for some x 6= 0 in Rn and < 0 for some
other x in Rn

• We can check the definiteness of a matrix by show that one of
these definitions holds as in the example Example

• You can find the eigenvalues to check definiteness Eigenvalues
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How else to check for definiteness?

You can check the sign of the sequence of determinants of the
leading principal minors:

Positive Definite

An n× n matrix M is positive definite if all the following matrices
have a positive determinant:

• the top left 1× 1 corner of M (1st order principal minor)

• the top left 2× 2 corner of M (2nd order principal minor)
...

• M itself.

In other words, all of the leading principal minors are positive.

Negative Definite

A matrix is negative definite if all kth order leading principal
minors are negative when k is odd and positive when k is even.



Fundamentals Quadratic Forms Systems Sums Applications Code

Why do we care about definiteness?

Useful for establishing if a (multivariate) function has a maximum,
minimum or neither at a critical point.

• If we have a function, f(x), we can show that a minimum
exists at a critical point, i.e. when f ′(x) = 0, if f ′′(x) > 0.

Example (f(x) = 2x2)

• f ′(x) = 4x

• f ′(x) = 0 =⇒ x = 0

• f ′′(x) = 4 > 0 =⇒ minimum at x = 0.

x

f(x)

1

1

f(x) = 2x2
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Why do we care about definiteness?

• In the special case of a univariate function f ′′(x) is a 1× 1
Hessian matrix and showing that f ′′(x) > 0 is equivalent to
showing that the Hessian is positive definite.

• If we have a bivariate function f(x, y) we find critical points
when the first order partial derivatives are equal to zero:

1. Find the first order derivatives and set them equal to zero
2. Solve simultaneously to find critical points

• We can check if max or min or neither using the Hessian
matrix, H, the matrix of second order partial derivatives:

H =

[
fxx fxy
fyx fyy

]
1. (If necessary) evaluate the Hessian at a critical point
2. Check if H is positive or negative definite: Check definiteness

• |H| > 0 and fxx > 0 =⇒ positive definite =⇒ minimum
• |H| > 0 and fxx < 0 =⇒ negative definite =⇒ maximum

3. Repeat for all critical points
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Why do we care about definiteness?

• If we find the second order conditions and show that it is a
positive definite matrix then we have shown that we have a
minimum.

• Positive definite matrices are non-singular, i.e. we can invert
them. So if we can show X′X is positive definiteness, we can
find [X′X]−1.

• Application: showing that the Ordinary Least Squares (OLS)
minimises the sum of squared residuals. Application
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Matrices as systems of equations

• A system of equations:

y1 = x11b1 + x12b2 + . . .+ x1kbk

y2 = x21b1 + x22b2 + . . .+ x2kbk
...

yn = xn1b1 + xn2b2 + . . .+ xnkbk

• The matrix form:
y1
y2
...
yn

 =


x11 x12 . . . x1k
x21 x22 . . . x2k

...
...

...
xn1 xn2 . . . xnk



b1
b2
...
bk

 .
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Matrices as systems of equations

• More succinctly: y = Xb where

y =


y1
y2
...
yn

 ; b =


b1
b2
...
bk

 ; xi =


xi1
xi2

...
xik


for i = 1, 2, . . . , n and

X =


x11 x12 . . . x1k
x21 x22 . . . x2k

...
...

...
xn1 xn2 . . . xnk

 =


x′1
x′2
...
x′n

 .
• xi is the “covariate vector” for the ith observation.

DM §1.4
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Matrices as systems of equations

• We can write y = Xb as
y1
y2
...
yn

 =


x′1
x′2
...
x′n

b.

• Returning to the original system, we can write each individual
equation using vectors:

y1 = x′1b

y2 = x′2b

...

yn = x′nb
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Mixing matrices, vectors and summation notation

Often we want to find X′u or X′X. A convenient way to write
this is as a sum of vectors. Say we have a 3× 2 matrix X:

X =

x11 x12
x21 x22
x31 x32

 =

x′1x′2
x′3

 ; xi =

[
xi1
xi2

]
; and u =

u1u2
u3


We can write,

X′u =

[
x11 x21 x31
x12 x22 x32

]u1u2
u3


=

[
x11u1 + x21u2 + x31u3
x12u1 + x22u2 + x32u3

]
= x1u1 + x2u2 + x3u3

=

3∑
i=1

xiui
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Mixing matrices, vectors and summation notation

In a similar fashion, you can also show that X′X =

3∑
i=1

xix
′
i.

X′X =

[
x11 x21 x31
x12 x22 x32

]x11 x12
x21 x22
x31 x32


=
[
x1 x2 x3

] x′1x′2
x′3


= x1x

′
1 + x2x

′
2 + x3x

′
3

=

3∑
i=1

xix
′
i
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Application: variance-covariance matrix

• For the univariate case, var(Y ) = E
(
[Y − µ]2

)
.

• In the multivariate case Y is a vector of n random variables.

• Without loss of generality, assume Y has mean zero, i.e.
E(Y) = µ = 0. Then,

cov(Y,Y) = var(Y) = E
(
[Y − µ][Y − µ]′

)
= E



Y1
Y2
...
Yn

 [Y1 Y2 · · · Yn
]


= E


Y 2
1 Y1Y2 · · · Y1Yn

Y2Y1 Y 2
2 · · · Y2Yn

...
...

...
YnY1 YnY2 · · · Y 2

n
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Application: variance-covariance matrix

• Hence, we have a variance-covariance matrix:

var(Y) =


var(Y1) cov(Y1, Y2) · · · cov(Y1, Yn)

cov(Y2, Y1) var(Y2) · · · cov(Y2, Yn)
...

...
...

cov(Yn, Y1) cov(Yn, Y2) · · · var(Yn)

 .
• What if we weight the random variables with a vector of

constants, a?

var(a′Y) = E
(
[a′Y − a′µ][a′Y − a′µ]′

)
= E

(
a′[Y − µ](a′[Y − µ])′

)
= E

(
a′[Y − µ][Y − µ]′a

)
= a′E

(
[Y − µ][Y − µ]′

)
a

= a′var(Y)a
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Application: variance of sums of random variables

Let Y = (Y1, Y2)
′ be a vector of random variables and

a = (a1, a2)
′ be some constants,

a′Y =
[
a1 a2

] [Y1
Y2

]
= a1Y1 + a2Y2

Now, var(a1Y1 + a2Y2) = var(a′Y) = a′var(Y)a where

var(Y) =

[
var(Y1) cov(Y1, Y2)

cov(Y1, Y2) var(Y2)

]
,

is the (symmetric) variance-covariance matrix.

var(a′Y) = a′var(Y)a

=
[
a1 a2

] [ var(Y1) cov(Y1, Y2)
cov(Y1, Y2) var(Y2)

] [
a1
a2

]
= a21var(Y1) + a22var(Y2) + 2a1a2cov(Y1, Y2)
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Application: Given a linear model y = Xβ + u derive the

OLS estimator β̂. Show that β̂ achieves a minimum.

• The OLS estimator β minimises the sum of squared residuals,
u′u =

∑n
i=1 u

2
i where u = y −Xβ or ui = yi − x′iβ .

S(β) =

n∑
i=1

(yi − x′iβ)
2 = (y −Xβ)′(y −Xβ)

= y′y − 2y′Xβ + β′X′Xβ.

• Take the first derivative of S(β) and set it equal to zero:

∂S(β)

∂β
= −2X′y + 2X′Xβ = 0 =⇒ X′Xβ̂ = X′y.

• Assuming X (and therefore X′X) is of full rank (so is X′X
invertible) we get,

β̂ = (X′X)−1X′y.
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Application: Given a linear model y = Xβ + u derive the

OLS estimator β̂. Show that β̂ achieves a minimum.

• For a minimum we need to use the second order conditions:

∂2S(β)

∂β∂β′
= 2X′X.

• The solution will be a minimum if X′X is a positive definite
matrix. Let q = c′X′Xc for some c 6= 0. Then

q = v′v =

n∑
i=1

v2i , where v = Xc.

• Unless v = 0, q is positive. But, if v = 0 then v or c would
be a linear combination of the columns of X that equals 0
which contradicts the assumption that X has full rank.

• Since c is arbitrary, q is positive for every c 6= 0 which
establishes that X′X is positive definite. Definiteness

• Therefore, if X has full rank, then the least squares solution β̂
is unique and minimises the sum of squared residuals.
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Matrix Operations

Operation R Matlab

A =

[
5 7
10 2

]
A=matrix(c(5,7,10,2),

ncol=2,byrow=T)
A = [5,7;10,2]

det(A) det(A) det(A)

A−1 solve(A) inv(A)

A+B A + B A + B

AB A %*% B A * B

A′ t(A) A’
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Matrix Operations

Operation R Matlab

eigenvalues &
eigenvectors

eigen(A) [V,E] = eig(A)

covariance
matrix of X

var(X) or cov(X) cov(X)

estimate of
rank(A)

qr(A)$rank rank(A)

r × r identity
matrix, Ir

diag(1,r) eye(r)
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Matlab Code

Figure 1 Figure 1

[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);

surfc(x,y,x.^2 + y.^2)

ylabel(’x_2’)

xlabel(’x_1’)

zlabel(’Q_1(x_1,x_2)’)

Figure 2 Figure 2

[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);

surfc(x,y,-x.^2 - y.^2)

ylabel(’x_2’)

xlabel(’x_1’)

zlabel(’Q_2(x_1,x_2)’)
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Matlab Code

Figure 3 Figure 3

[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);

surfc(x,y,x.^2 - y.^2)

ylabel(’x_2’)

xlabel(’x_1’)

zlabel(’Q_3(x_1,x_2)’)

Figure 4 Figure 4

[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);

surfc(x,y,x.^2 + 2.*x.*y + y.^2)

ylabel(’x_2’)

xlabel(’x_1’)

zlabel(’Q_4(x_1,x_2)’)
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Matlab Code

Figure 5 Figure 5

[x,y] = meshgrid(-10:0.75:10,-10:0.75:10);

surfc(x,y,-(x+y).^2)

ylabel(’x_2’)

xlabel(’x_1’)

zlabel(’Q_5(x_1,x_2)’)
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