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Bivariate data Correlation Regression Inference Transformations

Housekeeping

Contact details

• Email: garth.tarr@sydney.edu.au

• Room: 806 Carslaw Building

• Consultation: by appointment (email to arrange a time)

Tutorials

• Weeks 2 and 3 (check your timetable for details)

Quiz

• Week 4: Thursday 22nd August at 2:00

Online resources

• sydney.edu.au/science/maths/u/gartht/PHAR2821

Calculator

You need to bring a (non-programmable) calculator with you to all
lectures, tutorials and the quiz!

mailto:garth.tarr@sydney.edu.au
http://sydney.edu.au/science/maths/u/gartht/PHAR2821
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Outline

1. Correlation coefficient
• calculation
• properties
• interpretation

2. Simple linear regression:
• Least squares method and the assumptions used
• Residual plots and interpretation
• Using Excel to perform linear regression analysis
• Hypothesis testing for the slope parameter
• Interpretation of the slope parameter

3. Linearising transformations:
• Allometric
• Exponential
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Bivariate data

• Observations are sometimes observed in pairs, i.e. two
measurements may be observed on each person in a study.

• We can write n observations as:

(x1, y1), (x2, y2), . . . , (xn, yn).

• Often data will be stored in tables:

Observation (i) 1 2 3 . . . n

Variable 1 (xi) x1 x2 x3 . . . xn
Variable 2 (yi) y1 y2 y3 . . . yn

Example (Bivariate data)

A researcher is exploring whether there is a relationship between
blood pressure and weight. For each person in the study, she
records the person’s weight and their blood pressure.
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Bivariate data

Definition (Independent and dependent variables)

An independent variable is a variable that can be controlled to
determine the value of a dependent variable.

Lots of words that mean the same thing:

Independent variable Dependent variable
explanatory variable outcome variable
predictor variable response variable
controlled variable measured variable
regressor regressand
manipulated variable observed variable
input variable output variable
x y
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Independent and dependent variables

• Using the labels “independent” and “dependent” is only
important when we want to estimate one measurement on the
basis of the value of the other.

• The convention is to use the label y for the variable to be
estimated (the dependent variable) and to use x for the
independent variable.

Your turn: how would you label these variables?

1. drug concentration and blood pressure

2. height and weight

3. income and education
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Relationship between x and y?

• The point of this course is to enable you to determine if there
is a significant linear relationship between two variables.

• The first step in looking for some structure in the data, is to
draw a scatterplot.

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)
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Haldane effect

• John Burdon Sanderson Haldane
(1892–1964) was a physiologist famous
for intrepid self-experimenting which led
to many important discoveries about the
human body and the nature of gases.

• One of Haldane’s specialties was the
physiology of gas absorption and binding
in humans.

• To assess carbon dioxide regulation of blood pH he ingested
large quantities of sodium bicarbonate (NaHCO3) to make his
blood basic.

• Then he measured his breathing rate (in breaths per minute).

Dose (grams): 30 40 50 60 70 80 90 100
Breathing Rate: 16 14 13 13 11 12 9 9
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Haldane effect (n = 8)
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Source: J.B.S. Haldane (circa 1920)
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Father and son heights

• Statisticians in Victorian England
were fascinated by the idea of
quantifying hereditary influences.

• They gathered huge amounts of
data in pursuit of this goal.

• Karl Pearson (1857–1936) studied
1078 pairs of fathers and their
grown-up sons.

• He looked for a relationship between
the heights of fathers and their sons.

Your turn. . .

Which is the independent variable and which is the dependent
variable?
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Father and son heights (n = 1078)
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Source: Pearson, K. and Lee, A. (1903). Biometrika, 2(4):357–462.
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Correlation coefficient

Definition (Correlation coefficient)

A measure of linear association for a bivariate data set is the
correlation coefficient,

r =
Sxy√
SxxSyy

.

• Sxy =

n∑
i=1

(xi − x)(yi − y) =

n∑
i=1

xiyi − nx y.

• Sxx =

n∑
i=1

(xi − x)2 =

n∑
i=1

x2i − nx2.

• Syy =

n∑
i=1

(yi − y)2 =

n∑
i=1

y2i − ny2.

• Here x = 1
n

∑n
i=1 xi and y = 1

n

∑n
i=1 yi are the sample means

of x and y respectively.
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Correlation coefficient

• Sxx is proportional to the sample variance of x and similarly,
Syy is proportional to the sample variance of y:

Estimated variance of x = s2x =
1

n− 1
Sxx.

• Sxx and Syy are both guaranteed to be positive. (You have
made a mistake if they are not!)

• Sxy could be positive or negative.

• r is bounded: −1 ≤ r ≤ 1.

• r is not affected by a change of scale or origin. In other
words, r is scale invariant and location invariant.

• r is symmetric in x and y: the correlation between x and y is
the same as the correlation between y and x.
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Correlation of the Haldane data
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Need to know:

• n = 8

•
∑8

i=1 xi = 520

•
∑8

i=1 x
2
i = 38000

•
∑8

i=1 yi = 97

•
∑8

i=1 y
2
i = 1217

•
∑8

i=1 xiyi = 5910

Your turn. . .

• x =
1

8

∑8
i=1 xi =

65

• y =
1

8

∑8
i=1 yi =

12.125

• Sxx =

n∑
i=1

x2i − nx2 =

4200

• Syy =

n∑
i=1

y2i − ny2 =

40.875

• Sxy =

n∑
i=1

xiyi − n x y =

− 395

• r =
Sxy√
SxxSyy

=

− 0.95 (to 2 dp)
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Scale invariance with Haldane data

Consider the n = 8 observations from the Haldane data set, but
now we measure dose in decagrams instead of grams:

Dose (in decagrams) x: 3 4 5 6 7 8 9 10
Breathing rate y: 16 14 13 13 11 12 9 9

•
∑8

i=1 xi = 52

•
∑8

i=1 x
2
i = 380

•
∑8

i=1 xiyi = 591

•
∑8

i=1 yi = 97

•
∑8

i=1 y
2
i = 1217

• y = 12.125

• Syy = 40.875

Your turn. . .

• x = 1
n

∑n
i=1 xi =

6.5

• Sxy =
∑n

i=1 xiyi − n x y =

− 39.5

• Sxx =
∑n

i=1 x
2
i − nx2 =

42

• r =
Sxy√
SxxSyy

=

− 0.95 (to 2 dp)
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Calculating the correlation in Excel

Demonstration with the fathers’ and sons’ height data.
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Interpretation of the correlation coefficient, r

• The sign of r reflects the trend of the points. It is positive if y
increases with x and negative if y decreases as x increases.

• If r = 1, the points lie on a straight line of positive slope.

• If r = −1, the points lie on a straight line of negative slope.

• If r = 0, there is no linearity in the points even if there is
some other relationship.

• It is important not to interpret a high value of |r| as a
cause/effect relationship.

Important!

A value of r close to ±1 is not necessarily an indication of
causality!

XKCD

http://xkcd.com/552/
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Spurious correlation

Example

As ice cream sales increase, the rate of drowning deaths increases
sharply. Therefore,

(a) ice cream consumption causes drowning; or

(b) more ice cream is sold in summer months than during colder
times, and it is during summer that people are more likely to
go swimming and are therefore more likely to drown.

Example

Young children who sleep with the light on are much more likely to
develop myopia in later life. Therefore,

(a) sleeping with the light on causes myopia; or

(b) myopia is a genetic trait and adults with myopia are more
likely to leave the light on in their children’s bedroom. More

http://www.burns.com/wcbspurcorl.htm
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Scatter plots and their correlation
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Bivariate data Correlation Regression Inference Transformations

Anscombe’s quartet
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Bivariate data Correlation Regression Inference Transformations

Regression to the mean

“Taller parents have shorter children, on average.”

• Sir Francis Galton (1822–1911) was the first to note that tall
parents have shorter children, on average.

• His protege and colleague Karl Pearson studied 1078
father-and-son pairs.

• He found that the tall fathers had sons that were one inch
shorter, on average.

• On the other hand, on average, short fathers had sons that
were three inches taller.

• Galton termed this phenomenon regression to mediocrity.

• Ever since, the method of studying how one variable relates to
another variable has been called regression analysis.
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Father and son heights

150 160 170 180 190 200

15
0

16
0

17
0

18
0

19
0

20
0

Fathers height (cm)

S
on

s 
he

ig
ht

 (
cm

)
183

180

161

169



Bivariate data Correlation Regression Inference Transformations

The aim of regression analysis

• Aim: to estimate the relationship between two variables,

y = f(x).

• In this course we will focus on simple linear regression. So,
f(x) is a linear function, f(x) = α+ βx, i.e.,

y = α+ βx.

• But our observations do not lie on a perfectly straight line,
there’s an error component:

y = α+ βx+ ε.

• The error, ε, is the difference between the observed y value
and the value predicted by the line:

ε = y − (α+ βx).
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Bivariate data Correlation Regression Inference Transformations

Estimating the regression line

• The “true” relationship between y and x is given by the
population regression function:

y = α+ βx+ ε.

• Given a sample of data, we need to estimate the intercept α
and the slope β, with the estimated regression function:

ŷ = a+ bx.

• I.e. a and b estimate α and β in the same way that the
sample mean x̄ is an estimate of the population mean, µ.

Problem: how to find a and b?

To answer this question, we need to consider the estimate of the
error, ε, known as the residual, e.



Bivariate data Correlation Regression Inference Transformations

Residuals

• Suppose our estimate of the line y = α+ βx is ŷ = a+ bx.

Definition (Predicted or fitted value)

If we substitute x = xi into the estimated line, this gives us

ŷi = a+ bxi

as our estimate of the y at some observed xi. The estimate, ŷi, is
called the fitted value or predicted value of y at x = xi.

• However, at xi we actually observed yi.

Definition (Residuals)

The residuals, ei, are the difference between the observed values of
yi and the predicted values ŷi:

ei = yi − ŷi for i = 1, 2, . . . , n.
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Which line is best?

We want our residuals to be small in absolute size, otherwise our
line would have been bad at predicting the points we already have.

x

y

(x1, y1)y1

x1

ŷ = a+ bx

ŷ1

e1 = y1 − ŷ1
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How to estimate the regression line: ŷ = a+ bx

The method of least squares

Find the values of a and b that minimise the sum of squared
residuals (SSR):

SSR =

n∑
i=1

e2i =

n∑
i=1

[yi − (a+ bxi)]
2 ,

subject to the constraint that the overall mean residual is zero:

e =
1

n

n∑
i=1

ei =
1

n

n∑
i=1

[yi − (a+ bxi)] = 0.

Result:

a = ȳ − bx̄ and b =
Sxy
Sxx

where Sxy =
∑n

i=1 xiyi − nx̄ȳ, Sxx =
∑n

i=1 x
2
i − nx̄2,

x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi.
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The method of least squares: proof

From the constraint that the overall mean error is zero, we know

1

n

n∑
i=1

ei = 0

1

n

n∑
i=1

[yi − (a+ bxi)] = 0

1

n

n∑
i=1

[yi − a− bxi] = 0(
1

n

n∑
i=1

yi

)
− a− b

(
1

n

n∑
i=1

xi

)
= 0

y − a− bx = 0

a = y − bx.

Noting that if a is a constant then 1
n

∑n
i=1 a = 1

nna = a.
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The method of least squares: proof

Substituting a = y − bx in the formula for the residuals gives,

ei = yi − ŷi
= yi − (a+ bxi)

= yi − (y − bx+ bxi)

= yi − y + bx− bxi
= (yi − y)− b(xi − x).

We can write the sum of squared residuals as,

SSR =

n∑
i=1

e2i

=

n∑
i=1

[
(yi − y)2 − 2b(yi − y)(xi − x) + b2(xi − x)2

]
= Syy − 2bSxy + b2Sxx
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The method of least squares: proof

We want to minimise the sum of squared residuals, so we take the
derivative with respect to b:

d

db
SSR =

d

db

[
Syy − 2bSxy + b2Sxx

]
= −2Sxy + 2bSxx.

To find the value of b that produces a minimum SSR, we set the
derivative equal to zero and solve for b:

−2Sxy + 2bSxx = 0

b =
Sxy
Sxx

.

Result! ŷ = a+ bx

a = ȳ − bx̄ and b =
Sxy
Sxx
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Linear regression – example

In a study on the absorption of a drug, the dose x (in grams) and
concentration in the urine y (in mg/g) were recorded as:

x y

46 12
53 14
37 11
42 13
34 10
29 8
60 17
44 12
41 10
48 15
33 9
40 13 30 35 40 45 50 55 60
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Linear regression – example

i x y x2 y2 xy

1 46 12 462 = 2116 122 = 144 46×12 = 552
2 53 14 2809 196 742
3 37 11 1369 121 407
4 42 13 1764 169 546
5 34 10 1156 100 340
6 29 8 841 64 232
7 60 17 3600 289 1020
8 44 12 1936 144 528
9 41 10 1681 100 410

10 48 15 2304 225 720
11 33 9 1089 81 297
12 40 13 1600 169 520

507 144 22265 1802 6314∑
xi

∑
yi

∑
x2i

∑
y2i

∑
xiyi
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Linear regression – example

30 35 40 45 50 55 60
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• n = 12

•
∑12

i=1 x
2
i = 22265

•
∑12

i=1 y
2
i = 1802

•
∑12

i=1 xiyi = 6314

• x̄ = 507/12 = 42.25

• ȳ = 144/12 = 12

Your turn. . .
Sxy =

∑n
i=1 xiyi − nx̄ȳ

=

6314− 12× 42.25× 12

=

230

Sxx =
∑n

i=1 x
2
i − nx̄2

=

22265− 12× (42.252)

=

844.25

Hence,

b =
Sxy
Sxx

=

230

844.25
= 0.27 (to 2 d.p)

a = y − bx
=

12− 230

844.25
× 42.25

=

0.49 (to 2 d.p)



Bivariate data Correlation Regression Inference Transformations

Linear regression – example: ŷ = 0.49 + 0.27x
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Linear regression – example: Microsoft Excel

This is the relevant portion from Excel’s output for this example.

Regression Statistics

Multiple R 0.92 Absolute value of correlation coefficient, |r|
R Square 0.85 Square of correlation coefficient, r2

Adjusted R2 0.83 Not discussed in this course

Standard Error 1.06 Estimated standard deviation of residuals, σ̂

Observations 12 Sample size, n

Coefficients Standard Error t Stat P-value

Intercept (a) 0.49 1.58 0.31 0.76

Dose (b) 0.27 0.04 7.43 0.00
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Interpretation of a and b in ŷ = a+ bx

Slope coefficient, b

The average change in y for a one unit change in x:

On average, a one unit increase in x will cause a b unit
change in y.

Example (Dose and urine concentration: ŷ = 0.49 + 0.27x)

On average, a one gram increase in dose results in a 0.27 mg/g
increase in urine concentration.

Intercept, a

The intercept is the value of y predicted by the model when x = 0.
The intercept is often outside the range of observed values and
sometimes makes no physical sense. Often it is not an important
component to interpret.
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Prediction

• How do we predict y at x = xi using the regression line?

Answer: Find a and b, and substitute x = xi into ŷ = a+ bx,
taking care to keep sufficient decimal places to estimate with
the required precision.

Your turn. . .

Given our model,
ŷ = 0.49 + 0.27x

predict the urine concentration of a person who has been given a
dose of 55 grams:

ŷ =

0.49 + 0.27× 55 = 15.3 mg/g.
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Residual plots

• The residual at a typical point (xi, yi) is given by ei = yi − ŷi
where ŷ = 0.49 + 0.27x.

i x y ŷ e

1 46 12 0.49+0.27×46 = 12.91 12−12.91 = -0.91
2 53 14 14.80 -0.80
3 37 11 10.48 0.52
4 42 13 11.83 1.17
5 34 10 9.67 0.33
6 29 8 8.32 -0.32
7 60 17 16.69 0.31
8 44 12 12.37 -0.37
9 41 10 11.56 -1.56

10 48 15 13.45 1.55
11 33 9 9.40 -0.40
12 40 13 11.29 1.71

• The residual plot is a plot of all of the eis vs all of the xis.
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Residual plots
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Residual plots – interpretation

• The residual plot indicates that there is no pattern in the
residuals, just random scatter about the horizontal line
through zero.

• Together with the rough linear scatter in the scatterplot, this
tells us that the LSR line is a reasonable model.
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Least squares assumptions

Recall that the “true” or population model for the data is:

yi = α+ βxi + εi

Assumptions:

1. Linearity – we assume that the model is linear.

2. Independence – all the observations are obtained
independently of one another.

3. Homoskedasticity – the errors have constant variance:
var(εi) = σ2 (an unknown constant) for all i = 1, 2, . . . , n.

4. Normality – the errors are normally distributed:
εi ∼ N (0, σ2) for all i = 1, 2, . . . , n.

The last three can be written succinctly as:

εi
iid∼ N (0, σ2).

This reads: the errors are independently and identically distributed
as a normal random variable with mean 0 and variance σ2.
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Assumption 1: Linearity

• Often the linearity of the relationship between y and x can be
assessed after you’ve gathered the data but before you run the
regression.

• Plot y against x and look to see if the relationship is
approximately linear.

• Violations to linearity are quite serious, it means your
predictions are likely to be wrong, particularly when
extrapolating outside the range of observed values.

• After you have run the regression you can check for linearity
using a residual plot: plot ei against xi.

• The points should be symmetrically distributed around a
horizontal line.

• Look carefully for evidence of a “curved” pattern which
indicates that in parts the model regularly overestimates y and
in parts the model regularly underestimates y.
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Assumption 1: Linearity

To understand what a pattern in the residual plot tells us, try this:

1. Draw a rough scatterplot of points which follow a slight
convex quadratic pattern.

2. Draw the best straight line you can through the points.

3. Notice that the points are initially below the line (negative
residuals, ei) then there is a run of points above the line
(positive residuals, ei) and then points below again.

4. A plot of ei vs xi will show an obvious quadratic pattern.
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Assumption 1: Linearity
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Assumption 2: Independence

• The assumption of independence between the errors is usually
dealt with in the experimental design phase – before data
collection.

• You aim to design the experiment so that the observations are
not related to one another.

• For example, you randomly sample your participants rather
than just using members of your own family.

• If you don’t have a random sample, your estimates a and b
may be biased.

• Violations of independence usually arise in time series data
where observations are measured on the same subject through
time and therefore may be related to one another. This is
beyond the scope of PHAR2821.

The other two assumptions are more important for inference and
will be discussed in the third lecture.
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Measuring model performance

Definition (Coefficient of determination)

The value r2, the square of the correlation, can be interpreted as
the proportion of the variation in the values of y that are explained
by a linear fit of the data. It is a measure of goodness of fit. The
closer r2 is to 1, the better the fit.

Example

In the example of urine concentration against dose, the correlation
coefficient is

r =
Sxy√
SxxSyy

= 0.92

so the coefficient of determination is r2 = 0.922 = 0.85. Hence,
85% of the variability in urine concentration can be explained by
dose.
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Reduction in variation for urine concentration example
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Excel demonstration
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Caution with regression analysis

Before using bivariate data (xi, yi), i = 1, . . . , n, to estimate y
from a value of x, the first thing you must do is draw a
scatterplot and ask yourself the following questions.

1. Are the data scattered about a rough linear trend?
If not, there is no point in using the regression line,
y = α+ βx, for estimation.
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Caution with regression analysis

2. Look for outliers. They may simply be data entry errors, but
they may have the effect of producing an artificially high value
for r. They will also distort any estimated regression line.
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Caution!

These are the same sorts of considerations that you need to be
aware of before calculating the correlation coefficient.
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Link between correlation and regression

• The correlation coefficient measures the strength of the linear
association between x and y and is defined as

r =
Sxy√
SxxSyy

.

• The regression slope coefficient measures the change in y for
a unit increase in x and is defined as

b =
Sxy
Sxx

.

• As Sxx and Syy are always positive, r and b have the same
sign as Sxy.

• If r is positive (negative), then b is also positive (negative).
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Regression vs experts

Yale law professor Ian Ayres on regression:

William Grove, completed a meta-analysis of 136 human
versus machine studies. In only 8 out of 136 studies was
expert opinion found to be appreciably more accurate
than statistical prediction. . . Indeed, regression equations
are so much better than humans... that even very crude
regressions with just a few variables have been found to
outpredict humans.

Cognitive psychologists Richard Nisbett and Lee Ross on
regression:

Human judges are not merely worse than optimal
regression equations; they are worse than almost any
regression equation.

But how do we know if what we’ve found is statistically significant?
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Statistical inference on regression parameters

• Due to the fact that a and b are estimates of α and β we
might want to show how confident we are about these
estimates. To do this, we can construct confidence intervals.

• Another important decision we might wish to make is to
provide statistical evidence for whether the slope coefficient is
significantly different to zero. I.e. is there a relationship
between y and x. This is equivalent to testing the null
hypothesis, H0 : β = 0.

• Recall the population regression function,

y = α+ βx+ ε.

If β = 0 this implies that,

y = α+ ε.

I.e. y does not depend on x: changing the value of x does not
affect the value of y.
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Confidence intervals for regression parameters

Approximate 95% confidence intervals for α and β are

a± t? × SE(a) and b± t? × SE(b)

where t? is the appropriate quantile from a t distribution with
n− 2 degrees of freedom: P (|tn−2| > t?) = 0.05. In Excel this can
be found using =TINV(0.05,n-2) where n is the sample size.

t?−t?

Area = 0.95

tn−2

Area=0.025Area=0.025

−3 −2 −1 0 1 2 3
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Standard errors

• The standard error of a parameter is the standard deviation of
a parameter – it measures the uncertainty in the estimate.

• The standard error of a is given by,

SE(a) = σ̂

√
1

n
+

x2

Sxx
.

• The standard error of b is given by,

SE(b) =
σ̂√
Sxx

.

• These can be found in the Excel output:

Coefficients Standard Error . . .

Intercept a SE(a) . . .

X variable b SE(b) . . .
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Estimating the error variance

An estimate of the variance of the residuals:

σ̂2 =
RSS

n− 2
=

∑n
i=1 e

2
i

n− 2
=
Syy − bSxy
n− 2

.

The standard deviation of the residuals is known as the standard
error of the regression. It can be found in the regression output in
Excel:

Regression Statistics

Multiple R |r| Absolute value of correlation coefficient

R Square r2 Square of correlation coefficient

Standard Error σ̂ Estimated standard deviation of residuals

Observations n Sample size
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Confidence intervals in Excel

Confidence intervals are given explicitly in the standard Excel
regression output:

Coeff. Std. Error . . . Lower 95% Upper 95%

Intercept a SE(a) . . . a− t?×SE(a) a+ t?×SE(a)

X variable b SE(b) . . . b− t?×SE(b) b+ t?×SE(b)

Recall that t? can be found in Excel using =TINV(0.05,n-2)

where n is the sample size.
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Interpreting confidence intervals

• At the most basic level a confidence interval is:
A range of plausible values for the parameter.

• Technically, we interpret confidence intervals as:

If we run an experiment a large number of times,
and each time we construct a 95% confidence
interval for our parameter then, on average, we can
expect 95% of those confidence intervals to contain
the true population parameter.

• That is, we should really think about confidence intervals in
the context of a process: a series of experiments.

• It is not correct to say that we are 95% sure that a particular
confidence interval contains the true parameter.
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Confidence intervals for regression parameters

• In general, if zero is included in the 95% confidence interval
for β, then this provides evidence against x having a linear
effect on y.

• For example, if a 95% confidence interval for β was,

(−0.65, 0.90),

we would argue that x does not have a linear effect on y.

• This does not exclude the possibility that x could have a
nonlinear effect on y.

• In general, if zero is not included in the 95% confidence
interval for β, then this provides evidence for x having a linear
effect on y.

• For example, if the 95% CI for β was,

(0.65, 0.90),

then we would argue that x does have a linear effect on y.
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Confidence intervals for regression parameters – example

Recall the data from a study on the absorption of a drug, the dose
x (in grams) and concentration in the urine y (in mg/g):

x y

46 12
53 14
37 11
42 13
34 10
29 8
60 17
44 12
41 10
48 15
33 9
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Confidence intervals for regression parameters – example

• n = 12

•
∑12

i=1 xi = 507

•
∑12

i=1 yi = 144

•
∑12

i=1 x
2
i = 22265

•
∑12

i=1 y
2
i = 1802

•
∑12

i=1 xiyi = 6314

• x̄ = 42.25

• ȳ = 12

• Sxy = 230

• Sxx = 844.25

b =
Sxy
Sxx

=
230

844.25
= 0.27 (to 2 d.p)

a = y − bx = 0.49 (to 2 d.p)

Your turn. . .
Syy =

∑n
i=1 y

2
i − nȳ2

=

1802− 12× (122)

=

74

σ̂2 =
Syy − bSxy
n− 2

=

74−
(

230

844.25

)
× 230

12− 2

=

1.13 (to 2 d.p)
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Confidence intervals for regression parameters – example

Your turn. . .

Using the values Sxx = 844.25, n = 12, a = 0.49, b = 0.27 and
σ̂2 = 1.13 and noting from Excel that =TINV(0.05,12-2) is
2.228, the 95% confidence intervals for α and β are given by,

a± t? × σ̂

√
1

n
+

x2

Sxx
=

0.49± 2.228×
√

1.13×
√

1

12
+

(42.25)2

844.25

=

0.49± 3.51

=

(−3.02, 4.00)

b± t? × σ̂√
Sxx

=

0.27± 2.228×
√

1.13

844.25

=

0.27± 0.08

=

(0.19, 0.35)
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Confidence intervals for regression parameters – example

Excel does all this for us!

Coeff. Std. Error . . . Lower 95% Upper 95%

Intercept 0.49 1.58 . . . –3.03 4.01

Dose 0.27 0.04 . . . 0.19 0.35

Note: any differences can be put down to rounding errors in our
calculations.



Bivariate data Correlation Regression Inference Transformations

Revision: t tests

Recall the general set up for a one sample t test.

• If we have sample of size n and we want to test,

H0 : µ = 5 against H1 : µ 6= 5.

• The observed test statistic is:

tobs =
x̄− µ
SE(x̄)

=
x̄− 5

s/
√
n
∼ tn−1.

• The p-value is the likelihood of getting the observed test
statistic or something more extreme if the null hypothesis is
true. In this case it is:

2P (tn−1 > |tobs|).

• We reject the null hypothesis if the p-value is less than 0.05
and do not reject otherwise.
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Hypothesis testing on regression slope parameter

• Recall our model, y = α+ βx+ ε, of particular importance is
determining whether x actually has a linear effect on y.

• This is equivalent to testing the hypothesis

H0 : β = 0 versus H1 : β 6= 0.

• The appropriate test statistic is tobs =
b− β
SE(b)

=
b√

σ̂2/Sxx
.

• Under the null hypothesis, H0, the value tobs follows a t
distribution with n− 2 degrees of freedom.

• The p-value is given by

2P (tn−2 ≥ |tobs|) = 2 ∗ TDIST(ABS(tobs), n− 2, 1) in Excel.

• If the p-value is bigger than the significance level (e.g. 0.05),
we do not reject H0.
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Hypothesis testing on regression slope parameter in Excel

Coeff. Std. Error t-Stat P-value

Intercept a SE(a) t0 =
a

SE(a)
2P (tn−2 > |t0|)

X variable b SE(b) t1 =
b

SE(b)
2P (tn−2 > |t1|)

tobs =
b

SE(b)
; SE(b) =

b

tobs
; b = tobs × SE(b)

• Excel tests the null H0 : β = 0 against H1 : β 6= 0 so the
p-value is for a two tail test:

tobs−tobs
−3 −2 −1 0 1 2 3
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Hypothesis testing on regression slope parameter – example

In our dose and urine concentration example:

b = 0.27, σ̂2 = 1.13, Sxx = 844.25 and n = 12.

We are testing,

H0 : β = 0 against H1 : β 6= 0.

The observed test statistic is,

tobs =
b

SE(b)
=

b√
σ̂2/Sxx

=
0.27√

1.13/844.25
= 7.43

and the p-value is given by

2P (tn−2 ≥ |tobs|) = 2 ∗ TDIST(ABS(7.43), 10, 1)

=

2.2× 10−5.

Since the p-value is less than 0.05 we reject the null hypothesis,
i.e. we reject H0 : β = 0. Hence, there is strong evidence to
suggest that x has a linear effect on y.
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Hypothesis testing on regression slope parameter – Excel

Coeff Std Error t Stat P-value Lower 95% Upper 95%

Intercept 0.49 1.58 0.31 0.76 -3.03 4.01

Dose 0.272 0.0367 7.41 0.00 0.19 0.35

• Excel automatically tests H0 : β = 0 against H0 : β 6= 0.

• The t statistic Excel calculates is:

t =
b

SE(b)
=

0.272

0.0367
= 7.41.

• The corresponding p-value is:

2P (tn−2 ≥ |tobs|) = 2P (t10 ≥ 7.41) < 0.001.

• Note the agreement between the p-value and the confidence
interval – we conclude that the slope coefficient is significant
(significantly different to zero).
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Assumption 3: Homoskedasticity (constant error variance)

• Homoskedasticity (homo: same, skedasticity: spread) constant
variance is good.

• Violations of homoskedasticity, called heteroskedasticity, make
it difficult to estimate the “true” standard deviation of the
errors, usually resulting in confidence intervals that are too
wide or too narrow.

• Heteroskedasticity may also have the effect of giving too much
weight to small subset of the data (namely the subset where
the error variance was largest) when estimating coefficients.

• Heteroskedasticity appears in plots of residuals versus x. Look
for evidence of residuals that are getting larger (more
spread-out).
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Assumption 3: Homoskedasticity
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Assumption 4: Normality

• Violations of normality of the errors can compromise our
inferences. The calculation of confidence intervals may be too
wide or narrow and our conclusions from our hypothesis tests
may be incorrect.

• You can use a boxplot or histogram to check for normality.

• In some cases, the problem may be due to one or two outliers.
Such values should be scrutinised closely: are they genuine,
are they explainable, are similar events likely to occur again in
the future.

• Sometimes the extreme values in the data provide the most
useful information.

XKCD

http://xkcd.com/892/
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Alternative models

• A scatterplot can be used to give an initial indication as to
whether a linear model is appropriate or not.

• What can we do if it is clear that a linear relationship between
y and x will not be useful for estimating y from x?

Example (Brain to body mass ratio)

• Brain size usually increases with body size in animals.

• The relationship is not linear. Generally, small mammals have
relatively larger brains than big ones.
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Brain to body mass ratio
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Brain to body mass ratio – linear regression
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ŷ = 221.5 + 0.94x with r2 = 0.87
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Brain to body mass ratio – residual plot
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Transformations

• If the points don’t follow a linear pattern, it is not be sensible
to use a linear model.

• Apart from the usual scatter plot, residual plot might also
help to indicate which alternative model may be appropriate.

• The general idea is:

1. apply a function to your data to linearise the points – we will
introduce variables Y and X (functions of the original y and
x) which will result in a new set of points (Xi, Yi) which have
a linear trend.

2. estimate a straight line, checking any necessary assumptions.
3. transform estimates back to the original model.

• It’s not always obvious which linearising transformation is
appropriate – often scientific theory can give us guidance.

• The important question is how to define the linearising
transformation.
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Linearising transformations

There is no general rule, but there are two frequently occurring
classes of relationships for which standard linearising
transformations are available:

• allometric y = AxB; and

• exponential y = ABx relationships.
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Exponential transformation

• The transformation is so called because the independent
variable occurs as an exponent. It uses

y = ABx or equivalently y = AeCx,

where C = log(B).

• Here A and B (or C) are parameters which need to be
estimated.

Example

• Radioactive decay: N(t) = N0e
−λt.

• Bacterial growth: N(t) = N02
νt where N(t) is the number of

bacteria at time t, N0 is the initial number of bacteria and ν
is the doubling rate (number of divisions per unit time).
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Exponential example – THC excretion

• Tetrahydrocannabinol (∆9-THC), is the principal psychoactive
constituent of the cannabis plant.

• More than 55% of THC is excreted in the feces and 20% in
the urine. The main metabolite in urine is THCCOOH.

• Huestis et. al. (1996) characterises the urinary excretion
profiles of THCCOOH in a healthy male subject after single,
short-term, smoked dose of marijuana.

• The concentration (y) over time (x) can be modelled using an
exponential model: y = ABx.

• Specimens (n = 29) were collected in polypropylene
containers and refrigerated immediately after urination. Each
specimen was analyzed for THCCOOH by GC-MS.
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Exponential example – THC excretion
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Exponential example – THC excretion
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Allometric transformation

• An allometric (allo = different, metric = measure) relationship
is where one variable scales at a different rate to the other:

y = AxB

• Here A and B are parameters which need to be estimated.

Example

• Kleiber’s law (1932) relating metabolic rate and body mass:

Metabolic Rate = 70(Body Mass)0.75.

• Prediction of human pharmacokinetic (PK) parameters [e.g.,
clearance, volume of distribution Vd, elimination half life t1/2]
based on body weight (W):

PK = aWb.
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Allometric example – brain to body mass ratio

Body weight and brain size can be modelled using an allometric
relationship y = CxB, where y and x are body and brain weights
and C is known as the cephalisation factor.

Consider the following data on n = 24 mammals:

Animal Body (kg) Brain (g) Animal Body (kg) Brain (g)

Mouse 0.023 0.4 Chimpanzee 52.16 440
Golden hamster 0.12 1 Sheep 55.5 175
Mole 0.122 3 Human 62 1320
Guinea pig 1.04 5.5 Jaguar 100 157
Mountain beaver 1.35 465 Donkey 187.1 419
Rabbit 2.5 12.1 Pig 192 180
Cat 3.3 25.6 Gorilla 207 406
Rhesus monkey 6.8 179 Cow 465 423
Potar monkey 10 115 Horse 521 655
Goat 27.66 115 Giraffe 529 680
Kangaroo 35 56 Asian elephant 2547 4603
Grey wolf 36.33 119.5 African elephant 6654 5712
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Allometric example – brain to body mass ratio
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How do we apply these linearising transformations

What are the linearising transformations in these two standard
cases? Let’s take the log of both sides:

Allometric, y = AxB

log(y) = log(AxB)

= log(A) + log(xB)

= log(A) +Blog(x)

This linear relationship has
the log of y as the dependent
variable and the log of x as
the explanatory variable.

Double log or
Log-log model

Exponential, y = ABx

log(y) = log(ABx)

= log(A) + log(Bx)

= log(A) + log(B)x

This linear relationship has
the log of y as the dependent
variable but just x as the
explanatory variable.

Semi-log or
Log-linear model
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Semi-log transformation (exponential relationship)

• Say an exponential trend of the type y = ABx is expected.

• Take (natural) logs of both sides to obtain

log(y) = log(A) + log(B)x

Y = α+ βX

and so if we put Y = log(y), X = x, α = log(A) and
β = log(B) the line we now want to estimate is Y = α+ βX.

Procedure:

1. Perform a semi-log transform: for each of the observations,
i = 1, 2, . . . , n, set Xi = xi and Yi = log(yi).

2. Find a least squares regression line for Y = α+ βX in the
usual way.

3. Transform back to obtain the fitted curve y = ABx using
A = eα and B = eβ.
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Exponential example – THC excretion – formulation

• Our model for THC excretion can be written as

y = ABx

where y is the concentration of THCCOOHL (in ng/mL) in
the urine and x is the time since inhalation.

• To estimate A and B we use the semi-log transformation:

Y = α+ βX

where Y = log(y), X = x, α = log(A) and β = log(B).

0 50 100 150

0
20

60
10

0

Time (h)

T
H

C
C

O
O

H
 (

ng
/m

L)

0 50 100 150

1
2

3
4

Time (h)

lo
g(

T
H

C
C

O
O

H
 (

ng
/m

L)
)



Bivariate data Correlation Regression Inference Transformations

Exponential example – THC excretion – calculation

x y log(y) x y log(y)

7.3 113.8 4.73 82.8 11 2.4
12.4 62.4 4.13 92.8 10.4 2.34
15.6 61.4 4.12 99.8 9 2.2
23.8 53.3 3.98 105.4 9.5 2.25
26.6 41.2 3.72 110.5 5.2 1.65
32.6 47.9 3.87 116.7 5 1.61
36.4 61.2 4.11 127.3 5.8 1.76
44.5 37.5 3.62 130.5 5.2 1.65
48.3 32.8 3.49 133.8 4.3 1.46
52.3 24.6 3.2 143.3 4.2 1.44
54.4 12.7 2.54 151.4 4.5 1.5
59.3 14.7 2.69 155.6 4.3 1.46
62 11.2 2.42 161.1 2.1 0.74
72 19.1 2.95 166.5 1.5 0.41
78 16.4 2.8

Recall: X = x and Y = log(y)

∑
Xi =

∑
xi

= 2403∑
X2
i =

∑
x2i

= 267596.08∑
Yi =

∑
log(yi)

= 75.24∑
Y 2
i =

∑
log(yi)

2

= 231.1384∑
XiYi =

∑
xi log(yi)

= 4720.627

X = x = 82.862

Y = log(y) = 2.594
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Exponential example – THC excretion – results
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Our fitted least squares regression line is:

l̂og(y) = 4.427− 0.022x.

We can transform back to the original model:

ŷ = 83.7× 0.978x,

as e4.427 = 83.7 and e−0.022 = 0.978.
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Exponential example – THC excretion – interpretation

Definition (Semi-log model interpretation)

If the estimated model is

l̂og(y) = a+ bx,

we interpret this as follows:

On average, a one unit change in x will result in a
b× 100% change in y.

E.g. if the estimated coefficient is b = 0.05 that means that a one
unit increase in x will generate a 5% increase in y.

Example (THC model: l̂og(y) = 4.427− 0.022x)

On average, for each hour of time that passes, the concentration of
THC in the body will decrease by 2.2%.
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Double log transformation (allometric relationship)

• Say an allometric trend of the type y = AxB is expected.

• Take (natural) logs of both sides to obtain

log(y) = log(A) +Blog(x)

Y = α+ βX

and so if we put Y = log(y), X = log(x), α = log(A) and
β = B the line we now want to estimate is Y = α+ βX.

Procedure:

1. Perform a double log transform: for each of the observations,
i = 1, 2, . . . , n, set Xi = log(xi) and Yi = log(yi).

2. Find a least squares regression line for Y = α+ βX in the
usual way.

3. Transform back to obtain the fitted curve y = AxB using
A = eα and B = β.
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Allometric example – body and brain mass – formulation

• The large variation in scale for both the y and x axes in this
example indicate that an allometric model may be appropriate:

y = AxB.

where y is the brain mass and x is the body mass.
• To estimate A and B we use the double log transformation:

Y = α+ βX

where Y = log(y), X = log(x), α = log(A) and β = B.
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Allometric example – body and brain mass – calculation

In the excel data file, BodyBrainData.xlsx create 2 new columns:

Body (kg) Brain (g) log(body) log(brain)

Mouse 0.023 0.4 =ln(B2) =ln(C2)

Golden hamster 0.12 1 -2.10 0.00
Mole 0.122 3 -2.10 1.10
...

...
...

...
...

Then use these two columns to perform a simple linear regression:

Coeff Std Error t Stat P-value Lower 95% Upper 95%

Intercept 2.15 0.20 10.72 0.00 1.75 2.57

log(body) 0.75 0.05 16.45 0.00 0.66 0.85
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Allometric example – body and brain mass – results
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Our fitted least squares regression line is:

l̂og(y) = 2.15 + 0.75 log(x).

We can transform back to the original model:

ŷ = 8.58× x0.75,

as e2.15 = 8.58.
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Allometric example – body and brain mass – interpretation

Definition (Double log model interpretation)

If the estimated model is

l̂og(y) = a+ b log(x),

we interpret this as follows:

On average, a one percent change in x will result in a b%
change in y.

E.g. if the estimated coefficient is b = −2 that means that a one
percent increase in x will generate a 2% decrease in y.

Example (Body and brain mass: l̂og(y) = 2.15 + 0.75 log(x))

For mammals, on average, a one percent increase in body mass
leads to a 0.75% increase in brain mass.
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Allometric example – body and brain mass – residuals

−4 −2 0 2 4 6 8

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

log(Body weight (kg))

R
es

id
ua

l



Bivariate data Correlation Regression Inference Transformations

Allometric example – body and brain mass – testing

• Jerison (1983) suggests that if brain size is “driven” by body
surface area then the relationship should be of the form:

y = Ax2/3 i.e. log(y) = log(A) +
2

3
log(x).

• To test the null hypothesis, H0 : β = 2/3, consider the Excel
output:

Coeff Std Error t Stat P-value Lower 95% Upper 95%

Intercept 2.15 0.20 10.72 0.00 1.75 2.57

log(body) 0.75 0.05 16.45 0.00 0.66 0.85

• The hypothesised value of 2/3 is on the lower edge of the CI –
this is consistent with other studies which have found that
3/4 is a more likely value, suggesting that there’s more to the
relationship than just than body surface area. More

http://weber.ucsd.edu/~jmoore/courses/allometry/allometry.html
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Allometric example – body and brain mass – caution

• As this formula is based on data from mammals, it should be
applied to other animals with caution.
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